Skip to main content

Fast Artificial Immune Systems

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

Various studies have shown that characteristic Artificial Immune System (AIS) operators such as hypermutations and ageing can be very efficient at escaping local optima of multimodal optimisation problems. However, this efficiency comes at the expense of considerably slower runtimes during the exploitation phase compared to standard evolutionary algorithms. We propose modifications to the traditional ‘hypermutations with mutation potential’ (HMP) that allow them to be efficient at exploitation as well as maintaining their effective explorative characteristics. Rather than deterministically evaluating fitness after each bit-flip of a hypermutation, we sample the fitness function stochastically with a ‘parabolic’ distribution which allows the ‘stop at first constructive mutation’ (FCM) variant of HMP to reduce the linear amount of wasted function evaluations when no improvement is found to a constant. By returning the best sampled solution during the hypermutation, rather than the first constructive mutation, we then turn the extremely inefficient HMP operator without FCM, into a very effective operator for the standard Opt-IA AIS using hypermutation, cloning and ageing. We rigorously prove the effectiveness of the two proposed operators by analysing them on all problems where the performance of HPM is rigorously understood in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A parameter may be used to define the probability that each bit in the region actually flips. However, advantages of CHM over EAs have only been shown when all bits in the region flip.

  2. 2.

    A complete version of the paper including all the proofs is available on arXiv [13].

References

  1. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)

    Book  Google Scholar 

  2. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

    Article  Google Scholar 

  3. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for function optimisation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_26

    Chapter  Google Scholar 

  4. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models. IEEE Trans. Evol. Comput. 11(1), 101–117 (2007)

    Article  Google Scholar 

  5. Cutello, V., Nicosia, G., Pavone, M.: A hybrid immune algorithm with information gain for the graph coloring problem. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723, pp. 171–182. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_23

    Chapter  Google Scholar 

  6. Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the Opt-IA artificial immune system. In: Proceedings of the GECCO 2017, pp. 83–90 (2017)

    Google Scholar 

  7. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic contiguous hypermutations. Theor. Comput. Sci. 412(6), 517–533 (2011)

    Article  MathSciNet  Google Scholar 

  8. Jansen, T., Zarges, C.: Computing longest common subsequences with the B-Cell algorithm. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 111–124. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33757-4_9

    Chapter  Google Scholar 

  9. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-Cell algorithm for the vertex cover problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22371-6_13

    Chapter  Google Scholar 

  10. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2), 714–740 (2016)

    Article  MathSciNet  Google Scholar 

  11. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mechanisms. In: Proceedings of the GECCO 2014, pp. 113–120 (2014)

    Google Scholar 

  12. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)

    Article  MathSciNet  Google Scholar 

  13. Corus, D., Oliveto, P.S., Yazdani, D.: Fast artificial immune systems. ArXiv e-prints (2018). http://arxiv.org/abs/1806.00299

  14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  16. Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime comparison of natural and artificial evolution. Algorithmica 78(2), 681–713 (2017)

    Article  MathSciNet  Google Scholar 

  17. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete optimization. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 21–52. World Scientific (2011)

    Google Scholar 

  18. Corus, D., Oliveto, P.S., Yazdani, D.: When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms. ArXiv e-prints (2018). http://arxiv.org/abs/1804.01314

  19. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining exploration and exploitation. In: Proceedings of the CEC 2009, pp. 1455–1462 (2009)

    Google Scholar 

  20. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the GECCO 2017, pp. 777–784 (2017)

    Google Scholar 

  21. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. (2017)

    Google Scholar 

  22. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic algorithms. IEEE Trans. Evol. Comput. (2017, to appear)

    Google Scholar 

  23. Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In: Proceedings of the GECCO 2018. ACM (2018, to appear)

    Google Scholar 

  24. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \((1+(\lambda,\lambda ))\) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dogan Corus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corus, D., Oliveto, P.S., Yazdani, D. (2018). Fast Artificial Immune Systems. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics