Skip to main content

A Model-Based Framework for Black-Box Problem Comparison Using Gaussian Processes

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

An important challenge in black-box optimization is to be able to understand the relative performance of different algorithms on problem instances. This has motivated research in exploratory landscape analysis and algorithm selection, leading to a number of frameworks for analysis. However, these procedures often involve significant assumptions, or rely on information not typically available. In this paper we propose a new, model-based framework for the characterization of black-box optimization problems using Gaussian Process regression. The framework allows problem instances to be compared in a relatively simple way. The model-based approach also allows us to assess the goodness of fit and Gaussian Processes lead to an efficient means of model comparison. The implementation of the framework is described and validated on several test sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bajer, L., Pitra, Z., Holeňa, M.: Benchmarking Gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In: Proceedings of the Companion Publication of the 2015 Conference on Genetic and Evolutionary Computation, pp. 1143–1150. ACM (2015)

    Google Scholar 

  2. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Surrogate assisted feature computation for continuous problems. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 17–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_2

    Chapter  Google Scholar 

  3. Forrester, A., Keane, A., et al.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Hoboken (2008)

    Book  Google Scholar 

  4. Frean, M., Boyle, P.: Using Gaussian processes to optimize expensive functions. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 258–267. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89378-3_25

    Chapter  Google Scholar 

  5. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking: noiseless functions definitions. Technical report (2009)

    Google Scholar 

  6. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  7. Legrand, L., Grivel, E., Giremus, A.: Jeffrey’s divergence between autoregressive moving-average processes. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1085–1089. IEEE (2017)

    Google Scholar 

  8. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  9. Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic performance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 103–132. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4_4

    Chapter  Google Scholar 

  10. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 829–836. ACM (2011)

    Google Scholar 

  11. Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., Weihs, C.: Analyzing the bbob results by means of benchmarking concepts. Evol. Comput. 23(1), 161–185 (2015)

    Article  Google Scholar 

  12. Morgan, R., Gallagher, M.: Analysing and characterising optimization problems using length scale. Soft Comput. 21(7), 1735–1752 (2017)

    Article  Google Scholar 

  13. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_23

    Chapter  Google Scholar 

  14. Munoz, M.A., Kirley, M., Halgamuge, S.K.: The algorithm selection problem on the continuous optimization domain. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis, pp. 75–89. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32378-2_6

    Chapter  Google Scholar 

  15. Muñoz, M.A., Smith-Miles, K.A.: Performance analysis of continuous black-box optimization algorithms via footprints in instance space. Evol. Comput. 25(4), 529–554 (2017)

    Article  Google Scholar 

  16. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. 317, 224–245 (2015)

    Article  Google Scholar 

  17. Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimization. In: 3rd International Conference on Learning and Intelligent Optimization (LION3), pp. 1–15. Citeseer (2009)

    Google Scholar 

  18. Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 11(Nov), 3011–3015 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Rasmussen, C.E., Williams, C.K.: Gaussian Process for Machine Learning. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  20. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  21. Su, G.: Accelerating particle swarm optimization algorithms using Gaussian process machine learning. In: 2009 International Conference on Computational Intelligence and Natural Computing, CINC 2009, vol. 2, pp. 174–177. IEEE (2009)

    Google Scholar 

  22. Sun, Y., Halgamuge, S.K., Kirley, M., Munoz, M.A.: On the selection of fitness landscape analysis metrics for continuous optimization problems. In: 2014 7th International Conference on Information and Automation for Sustainability (ICIAfS), pp. 1–6. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Gallagher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saleem, S., Gallagher, M., Wood, I. (2018). A Model-Based Framework for Black-Box Problem Comparison Using Gaussian Processes. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics