Skip to main content

Precise Runtime Analysis for Plateaus

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11102))

Included in the following conference series:

Abstract

To gain a better theoretical understanding of how evolutionary algorithms cope with plateaus of constant fitness, we analyze how the \((1 + 1)\) EA optimizes the n-dimensional \(\textsc {Plateau} _k\) function. This function has a plateau of second-best fitness in a radius of k around the optimum. As optimization algorithm, we regard the \((1 + 1)\) EA using an arbitrary unbiased mutation operator. Denoting by \(\alpha \) the random number of bits flipped in an application of this operator and assuming \(\Pr [\alpha = 1] = \varOmega (1)\), we show the surprising result that for \(k \ge 2\) the expected optimization time of this algorithm is

$$ \frac{n^k}{k!\Pr [1 \le \alpha \le k]}(1 + o(1)), $$

that is, the size of the plateau times the expected waiting time for an iteration flipping between 1 and k bits. Our result implies that the optimal mutation rate for this function is approximately k/en. Our main analysis tool is a combined analysis of the Markov chains on the search point space and on the Hamming level space, an approach that promises to be useful also for other plateau problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As common in optimization, we reserve the notion unimodal for objective functions such that each non-optimal search point has a strictly better neighbor.

  2. 2.

    In the usual asymptotic sense, that is, meaning all but a lower order fraction.

  3. 3.

    We call a mutation rate optimal when it differs from the truly optimal rate at most by lower order terms, that is, e.g. a factor of \((1 \pm o(1))\).

  4. 4.

    For reasons of space, not all mathematical proofs could fit into this extended abstract. The proofs can be found in [1].

References

  1. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus (2018). http://arxiv.org/abs/1806.01331

  2. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_1

    Chapter  Google Scholar 

  3. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: On the effects of adding objectives to plateau functions. IEEE Trans. Evol. Comput. 13(3), 591–603 (2009)

    Article  Google Scholar 

  4. Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box complexity of jump functions. Evol. Comput. 24(4), 719–744 (2016)

    Article  Google Scholar 

  5. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic algorithms. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 890–900. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_83

    Chapter  Google Scholar 

  6. Dang, D.C., et al.: Escaping local optima with diversity mechanisms and crossover. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 645–652. ACM (2016)

    Google Scholar 

  7. Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to partial information. Algorithmica 75(3), 428–461 (2016)

    Article  MathSciNet  Google Scholar 

  8. Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of jump functions. Evol. Comput. 23(4), 641–670 (2015)

    Article  Google Scholar 

  9. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 2083–2090. ACM (2011)

    Google Scholar 

  10. Doerr, B., Hebbinghaus, N., Neumann, F.: Speeding up evolutionary algorithms through asymmetric mutation operators. Evol. Comput. 15, 401–410 (2007)

    Article  Google Scholar 

  11. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

    Article  Google Scholar 

  12. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit strings. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 929–936. ACM (2008)

    Google Scholar 

  13. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  14. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017). http://arxiv.org/abs/1703.03334

  15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  16. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evol. Comput. 7(2), 173–203 (1999)

    Article  Google Scholar 

  17. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 51–81 (2001)

    Article  MathSciNet  Google Scholar 

  18. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)

    Article  MathSciNet  Google Scholar 

  19. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 686–697. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_54

    Chapter  Google Scholar 

  21. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of generalised selection hyper-heuristics for pseudo-boolean optimisation. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 849–856. ACM (2017)

    Google Scholar 

  22. Meyer, C.D. (ed.): Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  23. Mironovich, V., Buzdalov, M.: Hard test generation for maximum flow algorithms with the fast crossover-based evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2015, pp. 1229–1232. ACM (2015)

    Google Scholar 

  24. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

    Article  Google Scholar 

  25. Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_6

    Chapter  Google Scholar 

  26. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Antipov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antipov, D., Doerr, B. (2018). Precise Runtime Analysis for Plateaus. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11102. Springer, Cham. https://doi.org/10.1007/978-3-319-99259-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99259-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99258-7

  • Online ISBN: 978-3-319-99259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics