Skip to main content

Sparse Incomplete LU-Decomposition for Wave Farm Designs Under Realistic Conditions

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Abstract

Wave energy is a widely available but still largely unexploited energy source, which has not yet reached full commercial development. A common design for a wave energy converter is called a point absorber (or buoy), which either floats on the surface or just below the surface of the water. Since a single buoy can only capture a limited amount of energy, large-scale wave energy production requires the deployment of buoys in large numbers called arrays. However, the efficiency of these arrays is affected by highly complex constructive and destructive intra-buoy interactions. We tackle the multi-objective variant of the buoy placement problem: we are taking into account the highly complex interactions of the buoys, while optimising critical design aspects: the energy yield, the necessary area, and the cable length needed to connect all buoys – while considering realistic wave conditions for the first time, i.e., a real wave spectrum and waves from multiple directions. To make the problem computationally feasible, we use sparse incomplete LU decomposition for solving systems of equations, and caching of integral computations. For the optimisation, we employ modern multi-objective solvers that are customised to the buoy placement problems. We analyse the wave field of final solutions to confirm the quality of the achieved layouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbonès, D.R., Ding, B., Sergiienko, N.Y., Wagner, M.: Fast and effective multi-objective optimisation of submerged wave energy converters. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 675–685. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_63

    Chapter  Google Scholar 

  2. Australian Wave Energy Atlas (2016). http://awavea.csiro.au/. Accessed 07 June 2016

  3. Babarit, A.: On the park effect in arrays of oscillating wave energy converters. Renew. Energy 58, 68–78 (2013)

    Article  Google Scholar 

  4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  5. GNU Scientific Library. Version 1.16 (2013). http://www.gnu.org/software/gsl/. Accessed 2 Apr 2017

  6. Hals, J., Falnes, J., Moan, T.: A comparison of selected strategies for adaptive control of wave energy converters. J. Offshore Mech. Arctic Eng. 133(3), 031101 (2011)

    Article  Google Scholar 

  7. Hansen, N.: CMA-ES Source Code: Practical Hints (2014). https://www.lri.fr/~hansen/cmaes_inmatlab.html. Accessed 2 Apr 2017

  8. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: IEEE Congress on Evolutionary Computation, pp. 312–317 (1996)

    Google Scholar 

  9. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  10. Justino, P., Clément, A.: Hydrodynamic performance for small arrays of submerged spheres. In: 5th European Wave Energy Conference (2003)

    Google Scholar 

  11. Krause, O., Glasmachers, T., Hansen, N., Igel, C.: Unbounded population MO-CMA-ES for the Bi-objective BBOB test suite. In: Genetic and Evolutionary Computation Conference, pp. 1177–1184. ACM (2016)

    Google Scholar 

  12. Lagoun, M., Benalia, A., Benbouzid, M.: Ocean wave converters: state of the art and current status. In: IEEE International Energy Conference, pp. 636–641 (2010)

    Google Scholar 

  13. López, I., Andreu, J., Ceballos, S., de Alegría, I.M., Kortabarria, I.: Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 27, 413–434 (2013)

    Article  Google Scholar 

  14. Lückehe, D., Wagner, M., Kramer, O.: On evolutionary approaches to wind turbine placement with geo-constraints. In: Genetic and Evolutionary Computation Conference, pp. 1223–1230. ACM (2015)

    Google Scholar 

  15. Lückehe, D., Wagner, M., Kramer, O.: Constrained evolutionary wind turbine placement with penalty functions. In: IEEE Congress on Evolutionary Computation (CEC), pp. 4903–4910 (2016)

    Google Scholar 

  16. Lynn, P.A.: Electricity from Wave and Tide: An Introduction to Marine Energy. Wiley, Hoboken (2013)

    Book  Google Scholar 

  17. McCabe, A., Aggidis, G., Widden, M.: Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm. Renew. Energy 35(12), 2767–2775 (2010)

    Article  Google Scholar 

  18. McIver, P.: Arrays of wave-energy devices. In: 5th International Workshop on Water Waves and Floating Bodies, Oxford, UK (1995)

    Google Scholar 

  19. Mohamed, M., Janiga, G., Pap, E., Thévenin, D.: Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion. Energy 36(1), 438–446 (2011)

    Article  Google Scholar 

  20. Neary, V.S., et al.: Methodology for design and economic analysis of marine energy conversion (MEC) technologies. Technical report, Sandia National Laboratories (2014)

    Google Scholar 

  21. Neshat, M., Alexander, B., Wagner, M., Xia, Y.: A detailed comparison of meta-heuristic methods for optimising wave energy converter placements. In: Genetic and Evolutionary Computation. ACM (2018, accepted)

    Google Scholar 

  22. Nunes, G., Valério, D., Beirao, P., Da Costa, J.S.: Modelling and control of a wave energy converter. Renew. Energy 36(7), 1913–1921 (2011)

    Article  Google Scholar 

  23. Scruggs, J.T., Lattanzio, S.M., Taflanidis, A.A., Cassidy, I.L.: Optimal causal control of a wave energy converter in a random sea. Appl. Ocean Res. 42(2013), 1–15 (2013)

    Article  Google Scholar 

  24. Sergiienko, N.Y., Cazzolato, B.S., Ding, B., Arjomandi, M.: Frequency domain model of the three-tether WECs array (2016). http://tiny.cc/ThreeTether. Code: http://tiny.cc/OptEn. Accessed 1 Mar 2018

  25. Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., Neumann, F.: Fast and effective multi-objective optimisation of wind turbine placement. In: Genetic and Evolutionary Computation, pp. 1381–1388. ACM (2013)

    Google Scholar 

  26. Wagner, M., Day, J., Neumann, F.: A fast and effective local search algorithm for optimizing the placement of wind turbines. Renew. Energy 51, 64–70 (2013)

    Article  Google Scholar 

  27. Wu, G.X.: Radiation and diffraction by a submerged sphere advancing in water waves of finite depth. Math. Phys. Sci. 448(1932), 29–54 (1995)

    Article  MathSciNet  Google Scholar 

  28. Wu, J., et al.: Fast and effective optimisation of arrays of submerged wave energy converters. In: GECCO, pp. 1045–1052. ACM (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arbonès, D.R., Sergiienko, N.Y., Ding, B., Krause, O., Igel, C., Wagner, M. (2018). Sparse Incomplete LU-Decomposition for Wave Farm Designs Under Realistic Conditions. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics