Geological and Geotechnical Significance

Part of the Springer Geology book series (SPRINGERGEOL)


In coastal marine facies, relative to their associates, crabs are accepted as important geologic agents (Frey et al. in J Palaeontol 58:333–350, 1984) because of their taxonomic diversity amongst crustaceans (4500 out of 26,000 species), very selective adaptability with the ecosystems, ability to produce wide range of environment-sensitive lebensspuren (Edwards and Frey in Senckenberg Marit 9:215–259, 1977) and bioerosional as well as biodepositional capabilities (Letzsch and Frey in Senckenberg Marit 12:201–212, 1980; De in Curr Sci 75:617–620, 1998). These characteristics qualify crustacean burrows, recent as well as ancient, as important geological tools for wide range of geological and geotechnical interpretation. This chapter addresses various geological and geotechnical importances and applications of the studied burrows and their preserved counterparts in stratigraphic records.


Ichnofacies Diopatra Crab Burrows Psilonichnus Skolithos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen EA, Curran HA (1974) Biogenic sedimentary structures produced by crabs in lagoon margin and salt marsh environments near Beaufort, North Carolina. J Sedi Petrol 44:538–548Google Scholar
  2. Allison MA (1998) Historical changes in the Ganges-Brahmaputra Delta Front. J Coast Res 14(4):1269–1275Google Scholar
  3. Bandopahdyay A, De C (2000) Algal micro-boring on ooids: an evidence of Holocene sea transgression in eastern India. Indian J Mar Sci 29:181–184Google Scholar
  4. Barnes RD (1980) Invertebrate zoology. Saunders College Publishing Co., PhiladelphiaGoogle Scholar
  5. Basan PB, Frey RW (1977) Actual palaeontology and neoichnology of salt marshes near Sapelo Island, Georgia. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J (Special Issue 9):41–70Google Scholar
  6. Bown TM (1982) Ichnofossils and rhizoliths of the nearshore fluvial Jebel Oatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 40:255–309CrossRefGoogle Scholar
  7. Bown TM, Kraus MJ (1983) Ichnofossils of the Alluvial Willwood Formation (Lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A. Paleogeogr Paleoclimatol Paleoecol 43:95–128CrossRefGoogle Scholar
  8. Braddy SJ (2001) Trackways—Arthropod locomotion pp 389–693. In: Briggs DEG, Crowther PR (eds) Palaeobiol II. Blackwell Science, Oxford, 600 ppGoogle Scholar
  9. Bromley RG, D’ Alessandro A (1990) Comparative analysis of bioerosion in deep and shallow water, Pliocene to Recent, Mediterranean Sea. Ichnos 1: 43–49CrossRefGoogle Scholar
  10. Bromley RG, Nils-Martin H, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Denmark 38:85–99Google Scholar
  11. Buatois LA, Mángano MG (2000) Application of ichnology to hydrocarbon prospecting and reservoir characterization. Boletin de Informaciones Petroleras 17:65–85Google Scholar
  12. Buatois LA, Mángano MG, Wu X et al (1995) Vagorichnus, a new ichnogenus for feeding burrow systems and its occurrence as discrete and compount ichnotaxa in Jurassic lacustrine turbidites of Central China. Ichnos 3:265–272CrossRefGoogle Scholar
  13. Buatois LA, Mángano MG, Maples CG et al (1998a) Allostratigraphic and sedimentologic application of trace fossils to the study of incised estuarine valleys: an example from the Virgilian Tonganoxie Sandstone Member of Eastern Kansas. Bul Kan Geol Surv 241:1–27Google Scholar
  14. Buatois LA, Mángano MG, Maples CG et al (1998b) Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: the Tonganoxie sandstone, buildix quarry, Eastern Kansas, USA. J Palaeontol 72(1):152–180CrossRefGoogle Scholar
  15. Chakraborti A (1980) Influence of biogenic activities of ghost crabs on the size parameters of beach sediments. Senckenberg Mariti 12:182–199Google Scholar
  16. Chakraborti A (1981) Burrow patterns of Ocypode ceratophthalma (Pallas) and their environmental significance. J Palaeontol 55:431–441Google Scholar
  17. Chakraborti PS (1991) Process response system analysis in the macrotidal estuaries and mesotidal coastal plains of eastern India. Indian J Mar Sci 29:181–184Google Scholar
  18. Chakraborti A (1993) Ocypode burrows as predictors of ancient shoreline position: new findings from a barred tidal flat. Indian J Geol 65:15–24Google Scholar
  19. Chakraborti A, Somayajulu BLK, Baskaran M et al (1993) Quaternary Miliolites of Kutch and Saurashtra, Western India: depositional environments in the light of physical sedimentary structures, biogenic structures and geochronological setting of the rocks. Senckenberg Mariti 23:7–28Google Scholar
  20. Chamberlain CK, Baer JK (1973) Ophiomorpha and a new thalassinid burrow from the Permian of Utah. Brigham Young Univ Geol Stud 20:79–94Google Scholar
  21. Chatterjee N, Mukhopadhyay R, Mitra D (2015) Decadal changes in shoreline patterns in Sundarbans, India. J Coast Sci 2(2):54–64
  22. Crane J (1975) Fiddler crabs of the world. Ocypodidae: genus Uca. Princeton University Press, PrincetonGoogle Scholar
  23. Curran HA, Frey RW (1977) Pleistocene trace fossils from North Carolina (USA) and their Holocene analogues. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J (Special Issue 9):139–162Google Scholar
  24. Curran HA, White B (1991) Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian Quaternary carbonates. Palaios 6:498–510CrossRefGoogle Scholar
  25. De C (1991) Presence of detrital scheelite grains in the Quaternary fluvial deposits of Banskantha district of north Gujarat and its significance. Indian Miner 45(4):325–330Google Scholar
  26. De C (1995) Environmental significaance of the Quaternary lebensspuren of the Banas River Basin of Gujarat, India. Indian Miner 49:13–30Google Scholar
  27. De C (1997) Study of modern Turritella attenuta trails and burrows on the Bhagirathi river beds and their significance. Indian Miner 51(1–2):199–206Google Scholar
  28. De C (1998) Biological reworkings of sediments by crabs: a cause for erosion of the Digha beach, West Bengal. Curr Sci 75(6):617–620Google Scholar
  29. De C (2000) Neoichnological activities of endobenthic invertebrates in downdrift coastal Ganges delta complex, India: their significance in trace fossil interpretations and palaeoshoreline reconstructions. Ichnos 7:89–113CrossRefGoogle Scholar
  30. De C (2001) Marine influence in the Indian Gondwana basins: a review from ichnological findings. J Geol Soc India 57:411–415Google Scholar
  31. De C (2002a) Continental mayfly burrows within relict-ground in inter-tidal beach profile of Bay of Bengal coast: a new ichnological evidence of Holocene marine transgression. Curr Sci 83(1):64–67Google Scholar
  32. De C (2002b) Application of a Biological tool for estimating current annual rates of erosion and deposition in modern coastal environments: a case study in the Bay of Bengal coast. Mar Georesour Geotechnol 20:209–220CrossRefGoogle Scholar
  33. De C (2003) Ichnological evidences of Holocene marine transgression in the Bay of Bengal Coast, West Bengal, India. InProceedings of GEOSAS Seminar, New Delhi, pp 302–311Google Scholar
  34. De C (2005a) Biophysical model of intertidal beach crab burrowing: application and significance. Ichnos 12:11–29CrossRefGoogle Scholar
  35. De C (2005b) Quaternary ichnofacies model for Palaeoenvironmental and Paleosealevel interpretations: a study from the Banas River Basin, western India. J Asian Earth Sci 25:233–249CrossRefGoogle Scholar
  36. De C (2006) Vindhyan trace fossils, dubiofossils and pseudofossils in the light of advent and early evolution of metazoans. Indian Miner 60(1–2):1–38Google Scholar
  37. De C (2009) Uca marionis mud volcanoes: a unique ichnological tool from the Bay of Bengal coast of India for ready assessment of beach stability. Mar Georesour Geotechnol 27:1–17CrossRefGoogle Scholar
  38. De C (2010) Sundarban delta complex: a special feature. Indian J Geosci 63(4):397–428Google Scholar
  39. De C (2014) Longest crab trackways from the Bay of Bengal Coast, India: their geological and geotechnical applications. Palaeontol Electronica 17.2.31A: 1–19Google Scholar
  40. De C (2015) Burrowing and mud mound building life habits of fiddler crab Uca lactea in the Bay of Bengal coast, India and their geological and geotechnical importance. Palaeontol Electronic 18.2.26A: 1–22Google Scholar
  41. De Chandreyee (2014) Excessively large scale slumping of Sajnekhali creek banks in the Sundarban mangrove delta complex: a consequence of rising sea. Current Sci 106(5):679–680Google Scholar
  42. De C, Bakshi SK (1981) Geological significance of the burrows produced by the crab Uca marionis on the salt marsh river bank of inner Sundarban Delta Complex, India. Geophytology 11:80–89Google Scholar
  43. De C, Mathur UB (1988) New find of oolitic calcareous sediments from the north Gujarat, India. In: Proceedings of the national seminar on recent quaternary studies in India, MSU Boroda, pp 155–163Google Scholar
  44. De C, Mathur UB (1991) Environmental analysis of Quaternary ichnofacies developed in Banas river basin of north Gujarat, India. In: Abstract in the workshop on ‘Evolution of westcoast of India during Quaternary and modern coastal processes’. 1GCP 274, GoaGoogle Scholar
  45. De C, Mathur UB (2007) Quaternary geological evolution of Gujarat with special reference to the inland Banas river basin and Bhavnagar coast, Gujarat, western India. Mem Geol Surv India 134:1–134Google Scholar
  46. Diedrich C (2008) Millions of reptile tracks—early to middle Triassic carbonate tidal flat migration bridges of Central Europe—reptile immigration into the Germanic Basin. Palaeogeogr Palaeoclimatol Palaeoecol 259:410–423CrossRefGoogle Scholar
  47. Dörjes J (1972) Georgia coastal region, Sapelo Island, USA. Sedimentology and bioloogy, VII. Distribution and zonation of macrobenthic animals. Senckenberg Marit 4:183–216Google Scholar
  48. Dörjes J (1977) Marine macrobenthic communities of the Sapelo Island, Georgia Region. In: Coull BC (ed) Ecology of Marine Benthos. University of South Carolina Press, Columbia, p 467pGoogle Scholar
  49. Dörjes J (1978) Sedimentologische und faunistische Untersuchungen an Watteni in Taiwan. II. Faunistische und aktuopaleontologische Studien. Senckenberg Marit 10:117–143Google Scholar
  50. Dörjes J, Hertweck G (1975) Recent biocoenoses and ichnocoenoses in shallow water marine environments. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, New York, pp 459–491CrossRefGoogle Scholar
  51. Dworschak PC (1983) The biology of Upogebia pusilla (Petagua) (Decapoda, Thalassinidae). 1 The burrows. Pubbl Staz Zool Napoli 1: Marine Ecol 4(1):19–43Google Scholar
  52. Edwards JM, Frey RW (1977) Substrate characteristics within a Holocene Salt marsh, Sapelo Island, Georgia. Senckenberg Marit 9:215–259Google Scholar
  53. Elizabeth AN, Kathleen AC (2002) New Psilonichnus ichnospecies attributed to mud shrimp Upogebia in estuarine setting. J Palaeontol 76(5):892–901Google Scholar
  54. Fairbridge RW (1961) Physical chemistry of the Earth, vol 4. Pergamon Press, New York, p 99Google Scholar
  55. Farrow GE (1966) Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire, England. Palaeogeogr Palaeoclimatol Palaeoecol 2:103–151CrossRefGoogle Scholar
  56. Farrow GE (1971) Back-reef and lagoonal environtments of Aldabra Atoll distinguished by their crustacean burrows. Symp Zool Soc London 28:455–500Google Scholar
  57. Frey RW, Basan PB (1981) Taphonomy of relict Holocene salt marsh deposits, Cabretta Island, Georgia. Senckenberg Marit 13:111–155Google Scholar
  58. Frey RW, Howard JD (1969) A profile of biogenic sedimentary structures in a Holocene barrier island-salt marsh complex, Georgia. Gulf Coast Assoc Geol Soc Trans 19:427–444Google Scholar
  59. Frey RW, Mayou TV (1971) Decapod burrows in Holocene Barrier Island, beaches and wash over fans, Georgia. Senckenberg Marit 3:53–77Google Scholar
  60. Frey RW, Premberton SG (1984) Trace fossil facies models. In: Walker RC (ed) Facies models. Geosci Canada, Reprint Series 1:189–207Google Scholar
  61. Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207CrossRefGoogle Scholar
  62. Frey RW, Basan PB, Scott RM (1973) Techniques for sampling saltmarsh benthos and burrows. Am Midl Nat 29:228–234CrossRefGoogle Scholar
  63. Frey RW, Basan PB, Pryor WA (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 23:199–229CrossRefGoogle Scholar
  64. Frey RW, Curren HA, Premberton G (1984) Trace making activities of crabs and their environmental significance. The ichnogenus Psilonichnus. J Palaeontol 58:333–350Google Scholar
  65. Fürsich FT (1981) Invertebrate trace fossils from the Upper Jurassic of Portugal. Comunicaçoes Servicio Geológico de Portugal 67:153–168Google Scholar
  66. Gingras MK, Pemberton SG, Saunders T (1999) The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings. Palaios 14:352–374CrossRefGoogle Scholar
  67. Gingras MK, Hubbard SM, Pemberton SG et al (2000) The significance of Pleistocene Psilonichnus at Willapa Bay, Washington. Palaios 15:142–151CrossRefGoogle Scholar
  68. Goldring R (1964) Trace-fossils and the sedimentary surface in shallow-water marine sediments. In: van Straaten L MJU (ed) Deltaic and shallow marine deposits. Developments in sedimentology, vol 1, pp 136–143Google Scholar
  69. Gradzinski R, Uchman A (1994) Trace fossils from interdune deposits-an example from the Lower Triassic aeolian Tumlin Sandstone, central Poland. Palaeogeogr Palaeoclimatol Palaeoecol 108:121–138CrossRefGoogle Scholar
  70. Häntzschel W (1975) Trace fossils and problematica. In: Teichert C (ed) Treatise on invertebrate palaeontology, Pt W, Miscellanea, Supplement 1. Geol Soc Am and Univ Kansas Press, Lawrence, p W269Google Scholar
  71. Hasiotis ST (1990) Identification of the architectural and surficial burrow morphologies of ancient lungfish and crayfish burrows: their importance in ichnology. The Australas Inst Min Metall Pac Rim Congr 3:529–536Google Scholar
  72. Hasiotis ST, Bown TM (1992) Invertebrate trace fossils: the backbone of continental ichnology. In: Maples CG, West RR (eds) Short courses in paleontology. Palaeontol Soc 5:64–104Google Scholar
  73. Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossils, Paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314CrossRefGoogle Scholar
  74. Hertweck G (1973) Der Golf Von Gaeta (Tyrrhenisches Meer). VI. Lebensspuren einger Bodenbewoohner and Jchnofaziesbereiche. Sencken Marit 5:179–197Google Scholar
  75. Hill GW, Hunter RE (1973) Burrows of the ghost crab Ocypode quadrata (Fabricus) on the barrier islands, south-central Texas Coast. J Sed Petrol 43:24–30Google Scholar
  76. Howard JD (1972) Trace fossils as criteria for recognizing shorlines in stratigraphic records. Univ. of Georgia Instt., Sapelo Island, Georgia. Recognition of ancient sedimentary environments. Soc Eco Plaeont Mine Spl Pub 16:215–225Google Scholar
  77. Howard JD (1975) Estuaries of the Georgia coast, U.S.A.: sedimentology and biology IX. Conclusion. Senekenberg marit 7:297–305Google Scholar
  78. Howard JD, Scott RM (1983) Comparison of Pleistocene and Holocene barrier island beach to offshore sequences, Georgia and northeast Florida Coasts, U.S.A. Sed Geol 34:167–183CrossRefGoogle Scholar
  79. Humphreys B, Balson PS (1988) Psilonichnus (Fűrsich) in Late Pliocene subtidal marine sands of Eastern England. J Paleontol 62:168–217CrossRefGoogle Scholar
  80. Jenkins RJK (1975) The fossil crab Ommatocarcinus corioensis (Cresswell) and a review of a related Australian species. Natl Mus Victoria Mem 36:33–62CrossRefGoogle Scholar
  81. Kent HC, van Wyk SJ, Williams SJ (1976) Modern coastal sedimentary environments, Alabama aqnd northwest Florida. Golden, Colorado, Geol Explo Asso Ltd, p 96Google Scholar
  82. Kern JP (1978) Palaeoenvironment of new trace fossils from the Eocene Mission Valley formation, California. J Palaeontol 52:186–194Google Scholar
  83. King CAM (1972) Beaches and coasts. Edward Arnold Press, London, p 329Google Scholar
  84. Letzsch WS, Frey RW (1980) Erosion of salt marsh tidal creek banks, Sapelo Island Georgia. Senckenberg Marit 12:201–212Google Scholar
  85. Mallick TK (2006) Crab pellets in the beaches—first hand clue for placer exploration. In: Loveson VJ, Chandrasekhar N, Sinha A (eds) Proceedings of development planning of coastal placer minerals (Placer 2005). Allied Publishers, New Delhi, pp 66–70Google Scholar
  86. Mangum CP, Santos SL, Rhodes WR (1968) Distribution and feeding in the onuphid polychaete Diopatra cupria (Bosc). Mar Biol 2:33–40CrossRefGoogle Scholar
  87. Mariano V, Sergio M (2004) A new ichnogenus for crustacean trace fossils from the Upper Miocene Camacho Formation of Uruguay. Palaeontology 47(1):39–49CrossRefGoogle Scholar
  88. Mayou TV, Howard JD (1975) Estuaries of the Georgia coast, U.S.A.: sedimentology and biology. VI. Animal-sediment relationships of a Salt Marsh Estuary-Doboy sound. Senckenberg Mariti 7:205–236Google Scholar
  89. Metz R (2000) Triassic trace fossils from lacustrine shoreline deposits of the Passaic Formation, Douglassville, Pennsylvania. Ichnos 7:253–266CrossRefGoogle Scholar
  90. Mondal I, Bandyopadhyay J, Chakrabarti P et al (2015) Morphodynamic change of Bakkhali and Frazergunj stretch of Indian Sundarban, south 24 Parganas, West Bengal, India. Int J Remote Sens Appl 5,, Scholar
  91. Moore RC (1962) Treatise on invertebrate palaeontology. Part W miscellanea. Geol Soc Am and Univ Kansas Press, pp W1–W259Google Scholar
  92. Myers AC (1970) Some palaeoichnological observations on the tubes of Diopatra cuprea (Bosc): polychaeta, Onuphidae. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J (Special Issue 3): 331–334Google Scholar
  93. Myers AC (1972) Tube-worm-sediment relationships of Diopatra cuprea (Polychaeta: Onuphidae). Mar Biol 17:331–334CrossRefGoogle Scholar
  94. Naidu AS (1988) Radiocarbon date of an oolitic sand collected from shelf off east coast of India. Bull Nat Inst Sci India 38:467–471Google Scholar
  95. Nomura S, Hatai K (1936) On the occurrence of peculiar shaped concretions probably due to some decapod crustaceans. Japan J Geol Geogra 13:57–61Google Scholar
  96. Pemberton SG, Maceachern JA, Frey RW (1992a) Trace fossil facies models: environmental and allostratigraphic significance. In: Walker RG (ed) Facies models. Response to sea level change. Geol Assoc Canada, pp 47–72Google Scholar
  97. Pemberton SG, MacEachern JA, Frey RW (1992b) Trace fossil facies models: environmental and allostratigraphic significance. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geol Assoc Can, Geotext 1:47–72Google Scholar
  98. Pirrie D, Feldmann RM, Buatois LA (2004) A new decapod trackaway from the upper cretaceous, James Ross Island, Antarctica. Palaeontology 47(1):1–12CrossRefGoogle Scholar
  99. Pollard JE (1985) Isopodichnus, related arthropod traces and notostracans from Triassic fluvial sediments: transactions of the Royal Society of Edinburgh. Earth Sci 76:273–285Google Scholar
  100. Radwański A (1977a) Burrows attributable to the ghost crab Ocypode from the Korytnica Basin (Middle Miocene: Holy Cross Mountains, Poland). Acta Geol Pol 27:217–225Google Scholar
  101. Radwański A (1977b) Present-day types of trace in the Neogene sequence: their problems of nomenclature and preservation. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J 2(Special Issue 9):227–267Google Scholar
  102. Reineck HE (1977) Natural indicators of energy level in Recent sediments: the application of ichnology to a coastal engineering problem. In: Crimes TP, Harper JC (eds) Trace fossils 2. Seel House Press, Liverpool, pp 265–272Google Scholar
  103. Reineck HE, Singh IB (1971) Der Golf Von Gaeta (Tyrrhenisches Meer). III. Die Gefuge Von Vorstrand und schelfsedimenten. Senckenberg Mariti 3:285–301Google Scholar
  104. Rhoads DC (1975) The paleoecological and environmental significance of trace fossils. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, New YorkCrossRefGoogle Scholar
  105. Richards BC (1975) Longusorbis cuniculosus: a new genus and species of Upper Cretaceous crab: with comments on Spray Formation at Shelter Point, Vancouver Island, British Columbia. Can J Earth Sci 12:1850–1863CrossRefGoogle Scholar
  106. Ricketts EF, Calvin J (1968) Between Pacific tides (4th ed., revised by JW Hedgpeth). Stanford University Press, Stanford, p 614Google Scholar
  107. Rindsberg AK (1992) Holocene ichnology of eastern Mississippi Sound, Alabama. Geol Surv Alabama Circular 167:75Google Scholar
  108. Schäfer W (1972) Ecology and palaeoecology of marine environments. University of Chicago Press, ChicagoGoogle Scholar
  109. Schmitt WL (1965) Crustaceans. University of Michigan Press, MichiganGoogle Scholar
  110. Seilacher A (1951) Der Röhrenbau von Lanice conchilega (polychaete). Senckenberg Mariti 32:267–280Google Scholar
  111. Skoog SY, Venn C, Simpson EL (1994) Distribution of Diopatra cuprea across modern tidal flats: implications for Skolithos. Palaios 9:188–201CrossRefGoogle Scholar
  112. Stephenson DG (1965) Fossil burrows on the coast of Kenya. Nature 207:850–851CrossRefGoogle Scholar
  113. Swinchatt JP (1969) Algal boring: a possible depth indicator in carbonate rocks and ediments. Geol Soc Am Bull 80:1391–1396CrossRefGoogle Scholar
  114. Takahashi S (1932) On the burrows of Ocypode creatophthalma Fabricius. Kwagaku 2:329–335Google Scholar
  115. Walker E (1985) Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions of the Royal Society of Edinburgh. Earth Sci 76:287–297Google Scholar
  116. Walter H (1983) Zur taxonomie, okologie und biostratigraphie der ichnia limnisch-terrestrischer arthropoden des mitteleuropaischen Jungpalao-zoikums. Freiberger Forschungssheft, C 382:146–193Google Scholar
  117. Warme JE (1975) Borings as trace fossils, and the process of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, New York, pp 181–228CrossRefGoogle Scholar
  118. Williams AB (1965) Marine decapod crustaceans of the Carolinas. Bureau Commercial Fish Bull 65(1):1–298Google Scholar
  119. Wilson MA, Curren HA, White B (1998) Palaeontological evidence of a brief global sea-level event during the last interglacial. Lethaia 31:241–250CrossRefGoogle Scholar
  120. Ziegelmeier E (1969) Neue Untersuchungen über die Wohnröhren-Bauweise von Lanice conchilega (Polychaeta, Sedentaria). Helgoländer Wiss. Meeresuntersuch 19:216–229CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Palaeontology DivisionGeological Survey of IndiaKolkataIndia

Personalised recommendations