Skip to main content

Biophysical Mechanism of Crab Burrowing

  • Chapter
  • First Online:
  • 282 Accesses

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

In terms of specific diversity and behavioral adaptations crabs (~4500 species) are important amongst crustaceans (~26,000 species). The true crabs (Brachyurans) exhibit wide range of habitat adaptations in freshwater, brackish water and marine environments. The burrowing (e.g., Uca spp.), running (e.g., Ocypode spp.) and swimming (e.g., Callinectes spp.) crabs leave various types of trace fossils , especially in post-Jurassic sedimentary rocks. Proper interpretation of the fossilized crab burrows from rock records in terms of geoenvironmental, hydrodynamic and geomorphological parameters demands a thorough understanding of the biophysical mechanisms involved in the burrowing processes of true crabs in different modern environmental settings. The biophysical mechanisms of crab burrowing both in shallow tidal marine and estuarine river bank settings as interpreted from the present study are addressed in this chapter. The application potential and significance of the present biophysical model of intertidal crab burrowing in ichnotaxonomy, recognition of fossilized crab burrows, characterization of the Psilonichnus ichnofacies, palaeoenvironmental and palaeogeographical analyses have been addressed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison MA (1998a) Geologic framework and environmental status of the Ganges-Brahmaputra Delta. J Coast Res 14(3):826–836

    Google Scholar 

  • Allison MA (1998b) Historical changes in the Ganges-Brahmaputra Delta Front. J Coast Res 14(4):1269–1275

    Google Scholar 

  • Bakshi SK, Ray TK, De C (1980) On the workings of some crabs on the sandy beach of Western Sundarban, Bengal Delta, India. J Geol Soc Ind 21:184–187

    Google Scholar 

  • Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bown TM (1982) Ichnofossils and rhizoliths of the nearshore fluvial Jebel Oatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeo Palaeoclimato Palaeoeco 40:255–309

    Article  Google Scholar 

  • Bromley RG (1990) Trace fossils: biology and taphonomy. Unwin Hyman, London

    Google Scholar 

  • Buatois LA, Mangano MG (1998) Trace fossils analysis of lacustrine facies and basins. Palaeogeo Palaeoclimato Palaeoeco 140:367–382

    Article  Google Scholar 

  • Buatois LA, Mángano MG (1995) The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos 4:151–161

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2000) Application of ichnology to hydrocarbon prospecting and reservoir characterization. Boletin de informaciones petroleras 17:65–85

    Google Scholar 

  • Buatois LA, Mángano MG, Maples CG (1997) The paradox of nonmarine ichnofaunas in tidal rhythmites: integrating sedimentologic and ichnologic data from the Late Carboniferous of Eastern Kansas, USA. Palaios 12:467–481

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Maples CG et al (1998a) Allostratigraphic and sedimentologic application of trace fossils to the study of incised estuarine valleys: an example from the Virgilian Tonganoxie Sandstone Member of Eastern Kansas. Bul Kan Geol Surv 241:1–27

    Google Scholar 

  • Buatois LA, Mángano MG, Genise JF et al (1998b) The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization and behavioral complexity. Palaios 13:217–240

    Article  Google Scholar 

  • Chakraborti A (1972) Beach structures produced by crab pellets. Sedimentology 18:129–134

    Article  Google Scholar 

  • Chakraborti A (1980) Influence of biogenic activities of ghost crabs on the size parameters of beach sediments. Senckenberg mariti 12:182–199

    Google Scholar 

  • Chakraborti A (1981) Burrow patterns of Ocypode ceratophthalma (Pallas) and their environmental significance. J Palaeont 55:431–441

    Google Scholar 

  • Chakraborti A (1993) Ocypode burrows as predictors of ancient shoreline position: New findings from a barred tidal flat. Ind J Geol 65:15–24

    Google Scholar 

  • Curran HA, Frey RW (1977) Pleistocene trace fossils from North Carolina (U.S.A.) and their Holocene analogues. In: Crimes TP, Harper JC (eds) Trace Fossils. Geological Journal Special Issue 9:139–162

    Google Scholar 

  • Curran HA, White B (1991) Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian Quaternary carbonates. Palaios 6:498–510

    Article  Google Scholar 

  • De C (1987) Burrow casting with paraffin wax. News GSI (WR) 6:16

    Google Scholar 

  • De C (1993) A new technique of burrow casting in terrestrial sediments and its applicability. Rec Geol Surv Ind 121:151–154

    Google Scholar 

  • De C (1995) Environmental significance of the Quaternary lebensspuren of the Banas River Basin of Gujarat, India. Ind Min 49:13–30

    Google Scholar 

  • De C (1998) Biological reworking of sediments by crabs: a cause for erosion of the Digha beach, West Bengal. Curr Sci 75(6):617–620

    Google Scholar 

  • De C (2000) Neoichnological activities of endobenthic invertebrates in downdrift coastal Ganges Delta complex, India: their significance in trace fossil interpretations and palaeoshoreline reconstructions. Ichnos 7:89–113

    Article  Google Scholar 

  • De C (2005a) Biophysical model of intertidal beach crab burrowing: application and significance. Ichnos 12:11–29

    Article  Google Scholar 

  • De C (2005b) Quaternary ichnofacies model for Palaeoenvironmental and Paleosealevel interpretations: a study from the Banas River Basin, western India. J Asian Earth Sc 25:233–249

    Article  Google Scholar 

  • De C, Mathur UB (2007) Quaternary geological evolution of Gujarat with special reference to the inland Banas river basin and Bhavnagar coast, Gujarat, western India. Mem Geol Surv Ind 134:1–134

    Google Scholar 

  • Dörjes J, Hertweck G (1975) Recent biocoenoses and ichnocoenoses in shallow water marine environments. In: Frey RW (ed) The study of Trace Fossils. Springer-Verlag, New York, pp 459–491

    Chapter  Google Scholar 

  • Farrow GE (1971) Back-reef and lagoonal environments of Aldabra Atoll distinguished by their crustacean burrows. Zool Soc of London Symp 28:455–500

    Google Scholar 

  • Frey RW, Basan PB (1981) Taphonomy of relict Holocene salt marsh deposits, Cabretta Island, Georgia. Senckenberg marit 13:111–155

    Google Scholar 

  • Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207

    Article  Google Scholar 

  • Frey RW, Curren HA, Premberton G (1984) Trace making activities of crabs and their environmental significance. The ichnogenus Psilonichnus. J Palaeont 58:333–350

    Google Scholar 

  • Fürsich FT (1981) Invertebrate trace fossils from the Upper Jurassic of Portugal. Comunicaçoes Servicio Geológico de Portugal 67:153–168

    Google Scholar 

  • Gingras MK, Pemberton SG, Saunders T (1999) The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: Variability in estuarine settings. Palaios 14:352–374

    Article  Google Scholar 

  • Gingras MK, Hubbard SM, Pemberton SG et al (2000) The significance of Pleistocene Psilonichnus at Willapa Bay, Washington. Palaios 15:142–151

    Article  Google Scholar 

  • Gradzinski R, Uchman A (1994) Trace fossils from interdune deposits-an example from the Lower Triassic aeolian Tumlin Sandstone, central Poland. Palaeogeo Palaeoclimato Palaeoeco 108:121–138

    Article  Google Scholar 

  • Hasiotis ST (1990) Identification of the architectural and surficial burrow morphologies of ancient lungfish and crayfish burrows: their importance in ichnology. Aust Inst Min Metal Paci Rim Cong 3:529–536

    Google Scholar 

  • Hasiotis ST, Bown TM (1992) Invertebrate trace fossils: the backbone of continental ichnology. In Maples CG, West RR (eds) Short Courses in Paleontology. Palaeont Soc 5:64–104

    Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossils, Paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    Article  Google Scholar 

  • Hertweck G (1973) Der Golf Von Gaeta (Tyrrhenisches Meer). VI. Lebensspuren einger Bodenbewoohner and Jchnofaziesbereiche. Sencken marit 5:179–197

    Google Scholar 

  • Howard JD (1972) Trace fossils as criteria for recognizing shorlines in stratigraphic records. University of Georgia Marine Institute, Sapelo Island, Georgia. Recognition of ancient sedimentary environments. Soc Eco Plaeont Mine Special Publication 16:215–225

    Google Scholar 

  • Howard JD, Scott RM (1983) Comparison of Pleistocene and Holocene barrier island beach to offshore sequences, Georgia and northeast Florida Coasts, U.S.A. Sedi Geol 34:167–183

    Article  Google Scholar 

  • Humphreys B, Balson PS (1988) Psilonichnus (Fűrsich) in Late Pliocene subtidal marine sands of Eastern England. J Paleont 62:168–217

    Article  Google Scholar 

  • Jenkins RJK (1975) The fossil crab Ommatocarcinus corioensis (Cresswell) and a review of a related Australian species. Mem Nat Muse Victoria 36:33–62

    Article  Google Scholar 

  • Kim JY, Paik IS (1997) Nonmarine Diplocraterion luniforme (Blanckenhorn 1916) from the Hasandong Formation (Cretaceous) of the Jinju area, Korea. Ichnos 5:131–138

    Article  Google Scholar 

  • Mallick S, Bhattacharaya A, Niyogi D (1972) A comparative study of the Quaternary formations in the Baitarani Valley, Orissa with those of the Damodar-Ajoy delta area, lower Ganga basin. In: Proceedings of the Seminar on geomorphology, geohydrology and geotectonics of the lower Ganga Basin, IIT, Kharagpur, West Bengal, pp 91–104

    Google Scholar 

  • Mángano MG, Buatois LA, Wu X et al (1994) Sedimentary facies, depositional processes and climatic controls in a Triassic lake, Tanzhung Formation, Western Henan Province, China. J Paleonto 11:41–65

    Google Scholar 

  • Metz R (2000) Triassic trace fossils from lacustrine shoreline deposits of the Passaic Formation, Douglassville, Pennsylvania. Ichnos 7:253–266

    Article  Google Scholar 

  • Nomura S, Hatai K (1936) On the occurrence of peculiar shaped concretions probably due to some decapod crustaceans. Japan J Geol and Geogr 13:57–61

    Google Scholar 

  • Pemberton SG, Frey RW, Ranger M et al (1992a) The conceptual framework of ichnology. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration, a core workshop. Soc Eco Paleonto Min Core Workshop 17:1–32

    Google Scholar 

  • Pemberton SG, MacEachern JA, Frey RW (1992b) Trace fossil facies models: environmental and allostratigraphic significance. In: Walker RG, James NP (eds) Facies Models: Response to Sea Level Change, Geological Association of Canada, Geotext 1:47–72

    Google Scholar 

  • Radwański A (1977a) Burrows attributable to the ghost crab Ocypode from the Korytnica Basin (Middle Miocene: Holy Cross Mountains, Poland). Acta Geol Polo 27:217–225

    Google Scholar 

  • Radwański A (1977b) Present-day types of trace in the Neogene sequence: their problems of nomenclature and preservation. In: Crimes TP, Harper JC (eds) Trace Fossils 2. Geological Journal, Special Issue 9:227–267

    Google Scholar 

  • Richards BC (1975) Longusorbis cuniculosus: a new genus and species of Upper Cretaceous crab: with comments on Spray Formation at Shelter Point, Vancouver Island, British Columbia. Canad J Earth Sci 12:1850–1863

    Article  Google Scholar 

  • Rindsberg AK (1992) Holocene ichnology of eastern Mississippi Sound, Alabama. Geol Surv Alabama Circular 167:75

    Google Scholar 

  • Shinn EA (1968) Burrowing in recent lime sediments of Florida and Bahamas. J Paleonto 42:879–894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirananda De .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De, C. (2019). Biophysical Mechanism of Crab Burrowing. In: Mangrove Ichnology of the Bay of Bengal Coast, Eastern India. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-99232-7_4

Download citation

Publish with us

Policies and ethics