Skip to main content

Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11094))

Included in the following conference series:

Abstract

Vehicles of higher automation levels require the creation of situation awareness. One important aspect of this situation awareness is an understanding of the current risk of a driving situation. In this work, we present a novel approach for the dynamic risk assessment of driving situations based on images of a front stereo camera using deep learning. To this end, we trained a deep neural network with recorded monocular images, disparity maps and a risk metric for diverse traffic scenes. Our approach can be used to create the aforementioned situation awareness of vehicles of higher automation levels and can serve as a heterogeneous channel to systems based on radar or lidar sensors that are used traditionally for the calculation of risk metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berthelot, A., Tamke, A., Dang, T., Breuel, G.: A novel approach for the probabilistic computation of time-to-collision. IEEE Intelligent Vehicles Symposium (2012)

    Google Scholar 

  2. Bojarski, M., et al.: End to end learning for self-driving cars (2016)

    Google Scholar 

  3. Bojarski, M., et al.: Explaining how a deep neural network trained with end-to-end learning steers a car (2017)

    Google Scholar 

  4. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  5. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  6. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  7. Feth, P.: Ein werkzeug zur entwicklung und zum vergleich von verfahren zur dynamischen risikobewertung für aktive sicherheitssysteme. In: International Commercial Vehicle Technology Symposium Kaiserslautern (2018)

    Google Scholar 

  8. Feth, P., Schneider, D., Adler, R.: A conceptual safety supervisor definition and evaluation framework for autonomous systems. In: International Conference on Computer Safety, Reliability and Security (2017)

    Google Scholar 

  9. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. Transactions on Pattern Analysis and Machine Intelligence (PAMI) (2008)

    Google Scholar 

  10. ISO: Intelligent transport systems - forward vehicle collision mitigation systems - operation, performance, and verification requirements (2013)

    Google Scholar 

  11. Jungnickel, R., Köhler, M., Korf, F.: Efficient automotive grid maps using a sensor ray based refinement process. In: IEEE Intelligent Vehicles Symposium (2016)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  13. Pomerleau, D.A.: Alvinn: an autonomous land vehicle in a neural network. In: Advances in Neural Information Processing Systems (1989)

    Google Scholar 

  14. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: International Conference on Computer Vision (2017)

    Google Scholar 

  15. Schreier, M., Willert, V., Adamy, J.: Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems. In: IEEE Intelligent Vehicles Symposium (2014)

    Google Scholar 

  16. Schuster, R., Wasenmüller, O., Kuschk, G., Bailer, C., Stricker, D.: SceneFlowFields: dense interpolation of sparse scene flow correspondences. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2018)

    Google Scholar 

  17. Taylor, G., Chosak, A., Brewer, P.: OVVV: Using virtual worlds to design and evaluate surveillance systems. IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  18. Thrun, S.: Stanley: the robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)

    Article  Google Scholar 

  19. Wachenfeld, W., Junietz, P., Wenzel, R., Winner, H.: The worst-time-to-collision metric for situation identification. In: IEEE Intelligent Vehicles Symposium (2016)

    Google Scholar 

  20. Wang, Y., Kato, J.: Collision risk rating of traffic scene from dashboard cameras. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6 (2017)

    Google Scholar 

  21. Yoshida, T., Wasenmüller, O., Stricker, D.: Time-of-flight sensor depth enhancement for automotive exhaust gas. In: IEEE International Conference on Image Processing (ICIP) (2017)

    Google Scholar 

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision (ECCV) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Feth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feth, P., Akram, M.N., Schuster, R., Wasenmüller, O. (2018). Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2018. Lecture Notes in Computer Science(), vol 11094. Springer, Cham. https://doi.org/10.1007/978-3-319-99229-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99229-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99228-0

  • Online ISBN: 978-3-319-99229-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics