Survey of Scenarios for Measurement of Reliable Wireless Communication in 5G

  • Matthias HerlichEmail author
  • Thomas Pfeiffenberger
  • Jia Lei Du
  • Peter Dorfinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11094)


In the future many parts of our lives will increasingly depend on wireless communication. Therefore, wireless communication should be reliable. Different scenarios need different methods to measure the reliability (e.g., active and passive). In this paper, we survey scenarios in which reliable communication is important and select two scenarios which are suited to measure the reliability of the wireless networks.

Based on literature search and interviews with experts in the field we determined two scenarios which demand a wide range of measurement methods: (1) vehicles transmitting collision warnings at intersections and (2) wireless emergency-stop buttons in factories. Both scenarios need wireless communication, but are so different they need different methods to measure the reliability of the wireless system.

Because the selected scenarios have different properties, the methods that can measure the reliability in these scenarios, will also be able to measure the reliability in many other scenarios. To be able to compare methods to measure reliability of wireless networks, researchers should focus on the same scenarios. We propose to use the scenarios described in this paper.



This research is partly funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) and the Austrian state Salzburg.


  1. 1.
    3GPP: TS 22.261 V. 16.1.0: Service requirements for the 5G system (2017)Google Scholar
  2. 2.
    5G-PPP: 5G and e-Health (2015)Google Scholar
  3. 3.
    5G-PPP: 5G and the Factories of the Future (2015)Google Scholar
  4. 4.
    5G-PPP: 5G Automotive Vision (2015)Google Scholar
  5. 5.
    5G-PPP: 5G Empowering Vertical Industries (2016)Google Scholar
  6. 6.
    5GAA: The Case for Cellular V2X for Safety and Cooperative Driving (2016)Google Scholar
  7. 7.
    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)CrossRefGoogle Scholar
  8. 8.
    Bergenhem, C., Shladover, S., Coelingh, E., Englund, C., Tsugawa, S.: Overview of platooning systems. In: Proceedings of the 19th ITS World Congress, 22–26 October, Vienna, Austria (2012)Google Scholar
  9. 9.
    Bundesministerium für Verkehr, Innovation und Technologie: Automatisiert - Vernetzt - Mobil (2016)Google Scholar
  10. 10.
    Bundesministerium für Verkehr, Innovation und Technologie: Produktion der Zukunft - Forschung und Technologieentwicklung für eine innovative Sachgüterproduktion (2017)Google Scholar
  11. 11.
    ECSEL-Austria: Austrian Research, Development & Innovation Roadmap for Automated Vehicles (2015)Google Scholar
  12. 12.
    European Commission: Factories of the Future - Multi-annual roadmap for the contractual PPP under Horizon 2020 (2013)Google Scholar
  13. 13.
    European Telecommunications Standards Institute: Intelligent Transport Systems (ITS); Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band. Technical report EN 302 663 V1.2.0, November 2012Google Scholar
  14. 14.
    European Telecommunications Standards Institute: LTE; Service requirements for V2X services. TS TS 122 185 V14.3.0, March 2017Google Scholar
  15. 15.
    Fachausschuss Funksysteme in der Informationstechnischen Gesellschaft im VDE (ITG): Funktechnologien für Industrie 4.0 - ITG AG FunkTechnologie 4.0 (2017)Google Scholar
  16. 16.
    Fokusgruppe Mobilkommunikation der Informationstechnischen Gesellschaft im VDE (ITG): Resiliente Netze mit Funkzugang (2017)Google Scholar
  17. 17.
    Frotzscher, A., Wetzker, U.: Avoiding down times - monitoring, diagnostics and troubleshooting of industrial wireless systems. In: Proceedings of the Wireless Congress: Systems and Applications (2017)Google Scholar
  18. 18.
    Holfeld, B., et al.: Radio channel characterization at 5.85 GHz for wireless M2M communication of industrial robots. In: Wireless Communications and Networking Conference (WCNC), pp. 1–7. IEEE (2016)Google Scholar
  19. 19.
    IKT für Mobilität: Studie Mobilität 2025: Koexistenz oder Konvergenz von IKT für Automotive? (2016)Google Scholar
  20. 20.
    Industrie 4.0 Working Group: Recommendations for implementing the strategic initiative INDUSTRIE 4.0 (2013)Google Scholar
  21. 21.
    International Eletrotechnical Commision (IEC): Factory of the future (2015)Google Scholar
  22. 22.
    International Union of Railways: UIC Project EIRENE System Requirements Specification (2006)Google Scholar
  23. 23.
    ITU: Minimum requirements related to technical performance for IMT-2020 radio interface(s) (2017)Google Scholar
  24. 24.
    Jiang, D., Delgrossi, L.: IEEE 802.11 p: towards an international standard for wireless access in vehicular environments. In: Vehicular Technology Conference (VTC Spring), pp. 2036–2040. IEEE (2008)Google Scholar
  25. 25.
    Siemens: SIMATIC HMI Mobile Panels wireless - Flexible configuration of effective ranges and zones via the SIMATIC WinCC visualization software (2013)Google Scholar
  26. 26.
    Siemens: 5G communication networks: Vertical industry requirements (2016)Google Scholar
  27. 27.
    Wireless World Research Forum: A new Generation of e-Health Systems Powered by 5G (2016)Google Scholar
  28. 28.
    Yilmaz, O.N., Wang, Y.P.E., Johansson, N.A., Brahmi, N., Ashraf, S.A., Sachs, J.: Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case. In: International Conference Communication Workshop (ICCW), pp. 1190–1195. IEEE (2015)Google Scholar
  29. 29.
    ZDKI Industrial Radio Technical Group 1: Aspects of Dependability Assessment in ZDKI: “Applications, Requirements and Validation” of the Accompanying Research (2017)Google Scholar
  30. 30.
    ZDKI Industrial Radio Technical Group 1: Requirement Profiles in ZDKI: “Applications, Requirements and Validation” of the Accompanying Research (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Matthias Herlich
    • 1
    Email author
  • Thomas Pfeiffenberger
    • 1
  • Jia Lei Du
    • 1
  • Peter Dorfinger
    • 1
  1. 1.Salzburg ResearchSalzburgAustria

Personalised recommendations