Skip to main content

The AlGaInP/AlGaAs Material System and Red/Yellow LED

  • Chapter
Light-Emitting Diodes

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 4))

Abstract

In this chapter, AlGaInP and AlGaAs alloy compound semiconductor system was reviewed for solid-state lighting application, including their lattice and bandgap structure, heterojunction, and quantum well properties. LEDs based on AlGaInP quantum well and GaAs substrate operating in the red, orange, and yellow visible spectrum were discussed including the major classes of AlGaInP device structures, such as GaP-absorbing substrate LEDs enhanced by distributed Bragg reflectors (DBRs), transparent-substrate LEDs (TS-LEDs), thin-film LEDs (TF-LEDs), and GaP window/current-spreading layer. AlGaInP/AlGaAs material MOCVD epitaxy and LED chip processing technology were introduced briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.M. Steranka, AlGaAs red light-emitting diodes, in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, vol. 48, (Academic, Cambridge, 1997)

    Google Scholar 

  2. H.C. Casey Jr., M.B. Panish, Heterostructure Lasers, Part A and Heterostructure Lasers, Part B (Academic, Cambridge, 1978)

    Google Scholar 

  3. C.H. Chen, S.A. Stockman, M.J. Peanasky, C.P. Kuo, OMVPE growth of AlGaInP for high efficiency visible light-emitting diodes, in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, vol. 48, (Academic, Cambridge, 1997)

    Google Scholar 

  4. L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 5(1), 17–26 (1921)

    Article  Google Scholar 

  5. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A At. Mol. Opt. Phys. 43(6), 3161–3164 (1991)

    Article  Google Scholar 

  6. F.A. Kish, R.M. Fletcher, AlGaInP light-emitting diodes, in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, vol. 48, (Academic, Cambridge, 1997)

    Google Scholar 

  7. X.H. Zhang, S.J. Chua, W.J. Fan, Band offsets at GaInP/AlGaInP(001) heterostructures lattice matched to GaAs. Appl. Phys. Lett. 73(8), 1098–1100 (1998)

    Article  Google Scholar 

  8. K. Kobayashi, Room-temperature CW operation of AlGaInP double-heterostructure visible lasers. Electron. Lett. 21, 931–932 (1985)

    Article  Google Scholar 

  9. C.P. Kuo, R.M. Fletcher, T.D. Osentowski, M.C. Lardizabel, M.G. Craford, V.M. Robbins, Appl. Phys. Lett. 57, 2937 (1990)

    Article  Google Scholar 

  10. H. Sugawara, M. Ishikawa, G. Hatakoshi, Appl. Phys. Lett. 58, 1010 (1991)

    Article  Google Scholar 

  11. M. Shigekazu, K. Masahiko, Characterization of OMVPE—grown A1GaInP by optical spectroscopy. SPIE Modulation Spectroscopy 1286, 74–84 (1990)

    Article  Google Scholar 

  12. R.M. Fletcher, C.P. Kuo, T.D. Osentowski, V.M. Robbins, US Patent No. 5,008,718 (1991)

    Google Scholar 

  13. H. Sugawara, M. Ishikawa, Y. Kokubun, Y. Nishikawa, S. Naritsuka, US Patent No. 5,048,035 (1991)

    Google Scholar 

  14. S. Illek, U. Jacob, A. Ploessl, P. Strauss, K. Streubel, W. Wegleiter, R. Wirth, Compound Semicond. 8, 39 (2002)

    Google Scholar 

  15. T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, S. Shibata, J. Cryst. Growth 107, 832 (1991)

    Article  Google Scholar 

  16. C.H.E.N. Yi-Xin, S.H.E.N. Guang-Di, et al., Efficiency-enhanced AlGaInP light-emitting diodes with thin window layers and coupled distributed bragg reflectors. Chin. Phys. Lett. 28(6), 067806 (2011)

    Article  Google Scholar 

  17. H.J. Lee, Y.J. Kim, S.U. Kim, et al., Efficiency improvement of 630 nm AlGaInP light-emitting diodes based on AlGaAs bottom window. Jpn. J. Appl. Phys. 52, 102101 (2013)

    Article  Google Scholar 

  18. H.W. Deckman, J.H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982)

    Article  Google Scholar 

  19. N. Linder, S. Kugler, P. Strauss, R. Wirth, H. Zull, K.P. Streubel, High-brightness AlGaInP light emitting diodes using surface texturing. Proc. SPIE 4278, 19–25 (2001)

    Article  Google Scholar 

  20. Y.J. Lee, H.C. Kuo, S.C. Wang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening. IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005)

    Article  Google Scholar 

  21. F.A. Kish et al., Appl. Phys. Lett. 64, 2839 (1994)

    Article  Google Scholar 

  22. G.E. Hoefler, D. Vanderwater, D.C. DeFevere, F.A. Kish, M. Camras, F. Steranka, I.-H. Tan, Appl. Phys. Lett. 69, 803 (1996)

    Article  Google Scholar 

  23. I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, Appl. Phys. Lett. 62, 131 (1993)

    Article  Google Scholar 

  24. N.F. Gardner, H.C. Chui, E.I. Chen, M.R. Krames, J.-W. Huang, F.A. Kish, S.A. Stockman, C.P. Kocot, T.S. Tan, N. Moll, Appl. Phys. Lett. 74, 2230 (1999)

    Article  Google Scholar 

  25. M.R. Krames, M. Ochiai-Holcomb, G.E. Höfler, et al., High-power truncated-inverted-pyramid (AlχGa1−χ)0.5In0.5P light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 75(16), 2365–2367 (1999)

    Article  Google Scholar 

  26. Z. Jian-Ming, Z. De-Shu, X. Chen, et al., AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact. Chin. Phys. Soc. 16(11), 3498 (2007)

    Article  Google Scholar 

  27. K. Bergenek et al., Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals. Appl. Phys. Lett. 93, 041105 (2008)

    Article  Google Scholar 

  28. W. Fan-Lei, O. Sin-Liang, Y.-C. Kao, et al., Thin-film vertical-type AlGaInP LEDs fabricated by epitaxial lift-off process via the patterned design of Cu substrate. Opt. Express 23(14), 18156–18165 (2015)

    Article  Google Scholar 

  29. M.-C. Tseng, C.-L. Chen, N.-K. Lai, et al., P-side-up thin-film AlGaInP-based light emitting diodes with direct ohmic contact of an ITO layer with a GaP window layer. Opt. Express 22(S7), A1862–A1867 (2014)

    Article  Google Scholar 

  30. Y.C. Lee, H.C. Kuo, C.E. Lee, T.C. Lu, S.C. Wang, IEEE Photon. Technol. Lett. 20, 23 (2008)

    Google Scholar 

  31. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, M.S. Shur, Optimization of white polychromatic semiconductor lamps. Appl. Phys. Lett. 80, 234–236 (2002)

    Article  Google Scholar 

  32. Y. Ohno, Spectral design considerations for white LED color rendering. Opt. Eng. 44, 111302 (2005)

    Article  Google Scholar 

  33. K.A. Bulashevich, A.V. Kulik, S.Y. Karpov, Optimal ways of colour mixing for high quality white light LED sources. Phys. Status Solidi A 212, 914–919 (2015)

    Article  Google Scholar 

  34. J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, J.Y. Tsao, Research challenges to ultra-efficient inorganic solid-state lighting. Laser Photonics Rev. 1, 307–333 (2007)

    Article  Google Scholar 

  35. J.Y. Tsao, M.E. Coltrin, M.H. Crawford, J.A. Simmons, Solid-state lighting: an integrated human factors, technology and economic perspective. Proc. IEEE 98, 1162–1179 (2009)

    Article  Google Scholar 

  36. Lumileds, LUXEON Rebel Color Line Datasheet (2017). http://www.lumileds.com/uploads/265/DS68-pdf. Accessed 31 May 2017

  37. Y. Ohno, in Color rendering and luminous efficacy of white LED spectra. Calculations based on white light simulator (2004)

    Google Scholar 

  38. DOE SSL Program, in Suggested Research Topics Supplement: Technology and Market Context, ed. by J. Brodrick (2017)

    Google Scholar 

  39. T. Gessmann, E.F. Schubert, High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications. J. Appl. Phys. 95, 2203–2216 (2004)

    Article  Google Scholar 

  40. G. Chen et al., Performance of high-power III-nitride light emitting diodes. Phys. Status Solidi A 205, 1086–1092 (2008)

    Article  Google Scholar 

  41. J. Day et al., III-nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011)

    Article  Google Scholar 

  42. C.-M. Kang, S.-J. Kang, S.-H. Mun, et al., Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission. Sci. Rep. 7(1), 10333 (2017)

    Article  Google Scholar 

  43. D. Karunatilaka, F. Zafar, V. Kalavally, R. Parthiban, LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutorials 17(3), 1649–1678 (2015)

    Article  Google Scholar 

  44. Y. Tanaka, T. Komine, S. Haruyama, M. Nakagawa, Indoor visible light data transmission system utilizing white LED lights. IEICE Trans. Commun. 86(8), 2440–2454 (2003)

    Google Scholar 

  45. J. Vucic, C. Kottke, K. Habel, K.D. Langer, in Proc. OFC/NFOEC, Los Angeles, CA, USA. 803 mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary (2011), pp. 1–3

    Google Scholar 

  46. O.H. Hwa Sub, J.O.O. Jee Hue, L.E.E. Jin Hong, et al., Structural optimization of high-power AlGaInP resonant cavity light-emitting diodes for visible light communications. Jpn. J. Appl. Phys. 47(8), 6214 (2008)

    Article  Google Scholar 

  47. C. Xinlian, K. Fanmin, k. Li, et al., Study of light extraction efficiency of flip-chip GaN based LEDs with different periodic arrays [J]. Opt. Commun. 314, 90–96 (2014)

    Article  Google Scholar 

  48. S. Shinji, H. Rei, H. Jongil, et al., InGaN light emitting diodes on c-face sapphire substrates in green gap spectral range [J]. Appl. Phys. Express 6(11), 111004 (2013)

    Article  Google Scholar 

  49. O. Jeong Rok, C. Sang-Hwan, O. Ji Hye, et al., The realization of a whole palette of colors in a green gap by monochromatic phosphor-converted light-emitting diodes [J]. Opt. Express 19(5), 4188–4198 (2011)

    Article  Google Scholar 

  50. J. Davies Matthew, D. Philip, C.-P. Massabuau Fabien, et al., The effects of varying threading dislocation density on the optical properties of InGaN/GaN quantum wells [J]. Phys. Status Solidi C 11, 750–753 (2014)

    Article  Google Scholar 

  51. J.L. Zhang, F.Y. Jiang, J.L. Liu, et al., Study on Epitaxial Growth and Device Characterization of GaN Based Yellow Light-Emitting Diodes on Si Substrate (Nanchang University, Nanchang, 2014), pp. 3–11

    Google Scholar 

  52. Steve Bush, Osram starts to bridge green gap (2015). http://en.ofweek.com/news/Osram-starts-to-bridge-green-gap-23824

    Google Scholar 

  53. C.H. Wang, C.C. Ke, C.Y. Lee, et al., Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. Appl. Phys. Lett. 97(26), 261103 (2010)

    Article  Google Scholar 

  54. G. Wei, Z. Fan, M. Morteza, et al., Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics [J]. Nano Lett. 11(4), 1434–1438 (2011)

    Article  Google Scholar 

  55. C.H. Wang, J.R. Chen, C.H. Chiu, et al., Temperature-dependent electroluminescence efficiency in blue InGaN-GaN light-emitting diodes with different well widths [J]. IEEE Photon. Technol. Lett. 22(4), 236–238 (2010)

    Article  Google Scholar 

  56. J.L. Zhang, F.Y. Jiang, J.L. Liu, et al., Study on Epitaxial Growth and Device Characterization of GaN Based Yellow Light-Emitting Diodes on Si Substrate (Nanchang University, Nanchang, 2014), p. 15

    Google Scholar 

  57. J.R. Chen, Y.C. Wu, S.C. Ling, et al., Investigation of wavelength dependent efficiency droop in InGaN light emitting diodes [J]. Appl. Phys. B 98(4), 779–789 (2010)

    Article  Google Scholar 

  58. S. Dong-Soo, H. Dong-Pyo, O. Ji-Yeon, et al., Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence [J]. Appl. Phys. Lett. 100(15), 153506 (2012)

    Article  Google Scholar 

  59. N. Shuji, S. Masayuki, I. Naruhito, et al., High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures [J]. Jpn. J. Appl. Phys. 34(Part 2, 7A), L797 (1995)

    Google Scholar 

  60. F. Mitsuru, U. Masaya, K. Yoichi, et al., Blue, green and amber InGaN/GaN light-emitting diodes on semi polar {11-22} GaN bulk substrates [J]. Jpn. J. Appl. Phys. 45(26), L659 (2006)

    Article  Google Scholar 

  61. S. Hitoshi, B. Chung Roy, H. Hirohiko, et al., Optical properties of yellow light-emitting diodes grown on semi polar (11-22) bulk GaN substrates [J]. Appl. Phys. Lett. 92(22), 221110–221113 (2008)

    Article  Google Scholar 

  62. Y. Shuichiro, Z. Yuji, P. Chih-Chien, et al., High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semi polar (20-21) GaN substrates [J]. Appl. Phys. Express 3(12), 122102 (2010)

    Article  Google Scholar 

  63. P. Il-Kyu, K. Min-Ki, B. Sung-Ho, et al., Enhancement of phase separation in the InGaN layer for self-assembled in-rich quantum dots [J]. Appl. Phys. Lett. 87(6), 061906 (2005)

    Article  Google Scholar 

  64. C.B. Soh, W. Liu, H. Hartono, et al., Enhanced optical performance of amber emitting quantum dots incorporated InGaN/GaN light-emitting diodes with growth on UV-enhanced electrochemically etched nanoporous GaN [J]. Appl. Phys. Lett. 98(19), 191906 (2011)

    Article  Google Scholar 

  65. L. Wenbin, W. Lai, W. Jiaxing, et al., InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers [J]. Nanoscale Res. Lett. 7(1), 1–8 (2012)

    Article  Google Scholar 

  66. S.L. Delage, D. Christian, Wide band gap semiconductor reliability: status and trends [J]. Microelectron. Reliab. 43(9–11), 1705–1712 (2003)

    Article  Google Scholar 

  67. K. Ryosuke, K. Toshiyuki, S. Atushi, et al., Realization of extreme light extraction efficiency for moth-eye LEDs on SiC substrate using high-reflection electrode [J]. Phys. Status Solidi C 7(7–8), 2180–2182 (2010)

    Google Scholar 

  68. P. Chen, R. Zhang, Z.M. Zhao, et al., Growth of high quality GaN layers with AlN buffer on Si (111) substrates [J]. J. Cryst. Growth 225(2), 150–154 (2001)

    Article  Google Scholar 

  69. L. Junlin, z. Jianli, M. Qinghua, et al., Effects of AlN interlayer on growth of GaN-based LED on patterned silicon substrate [J]. CrystEngComm 15(17), 3372–3376 (2013)

    Article  Google Scholar 

  70. J.L. Zhang, F.Y. Jiang, J.L. Liu, et al., Study on Epitaxial Growth and Device Characterization of GaN Based Yellow Light-Emitting Diodes on Si Substrate (Nanchang University, Nanchang, 2014), p. 16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Wang, G., Yi, X., Zhan, T., Huang, Y. (2019). The AlGaInP/AlGaAs Material System and Red/Yellow LED. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics