Skip to main content

SiC Single Crystal Growth and Substrate Processing

  • Chapter
Light-Emitting Diodes

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 4))

Abstract

Silicon carbide (SiC) is the typical representative of the third-generation semiconductor materials. Due to the wide bandgap, high thermal conductivity, high saturated carrier mobility, high threshold breakdown electric field strength, and high chemical stability, it is an ideal substrate for the fabrication of power electronics and radio frequency devices operating at extreme environments, such as high temperature, high frequency, high power, and strong radiation. Therefore, SiC has extensive applications in white-light illumination, automobile electronic, radar communication, aeronautic and aerospace, and nuclear radiation. Since the 1990s, SiC has attracted much attention due to the breakthrough in SiC single crystal growth technology. Up to now, 6” SiC substrates are commercially available. In this chapter, we mainly introduce the SiC single crystal growth and substrate processing technologies. In Sect. 2.1, SiC material development history and single crystal growth method were described. In Sect. 2.2, the structure and properties of SiC were given. In Sect. 2.3, we focus on the SiC single crystal growth by PVT method. In Sect. 2.4, the formation mechanism of structural defects in SiC and how to control these defects were presented. In Sect. 2.5, the control of electrical behavior of SiC was discussed. In Sect. 2.6, the SiC substrate processing technology was introduced. We wish this chapter has the reference value for SiC crystal grower and substrate processing technician.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409 (1996)

    Article  Google Scholar 

  2. R. Han, X. Xu, X. Hu, et al., Development of bulk SiC single crystal grown by physical vapor transport method. Opt. Mater. 23, 415 (2003)

    Article  Google Scholar 

  3. J.J. Berzelius, Ann. Phys. Chem. Lpz. 1, 169 (1824)

    Article  Google Scholar 

  4. E.G. Acheson Production of artificial crystalline carbonaceous materials, carborundum. English Patent 17911 (1892)

    Google Scholar 

  5. H. Moissan, Étude du siliciure de carbone de la météorite de cañon diablo. C. R. Acad. Sci. 140, 405 (1905)

    Google Scholar 

  6. H.J. Round, Elect. World 19, 309 (1907)

    Google Scholar 

  7. W.F. Kmippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 16 (1963)

    Google Scholar 

  8. Y.M. Tairov, V.F. Tsvetkov, General principles of growing large-size single crystals of various silicon carbide polytypes. J. Cryst. Growth 52, 146 (1981)

    Article  Google Scholar 

  9. A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, et al., Bulk growth of large area SiC crystals. Mater. Sci. Forum 858, 5 (2016)

    Article  Google Scholar 

  10. D.H. Hofmann, M.H. Müller, Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Mater. Sci. Eng. B 61, 29 (1999)

    Article  Google Scholar 

  11. K. Danno, H. Saitoh, A. Seki, et al., High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt. Mater. Sci. Forum 645, 13 (2010)

    Article  Google Scholar 

  12. J. Kojima, Y. Tokuda, E. Makino, N. Sugiyama, et al., Developing technologies of SiC gas source growth method. Mater. Sci. Forum 858, 23 (2015)

    Article  Google Scholar 

  13. G.R. Fisher, P. Barnes, Toward a unified view of polytypism in silicon carbide. Philos. Mag. B 61, 217 (1990)

    Article  Google Scholar 

  14. R.P. Adrian, B.R. Larry, SiC materials-progress, status, and potential roadblocks. Proc. IEEE 90, 942 (2002)

    Article  Google Scholar 

  15. S.Y. Kaprov, Y.N. Makarov, M.S. Ramm, Simulation of sublimation growth of SiC single crystals. Phys. Status Solidi B 202, 201 (1997)

    Article  Google Scholar 

  16. M. Pons, E. Blanquet, J.M. Dedulle, Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals. J. Electrochem. Soc. 143, 3727 (1996)

    Article  Google Scholar 

  17. M. Selder, L. Kadinski, Y. Makarov, et al., Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT. J. Cryst. Growth 211, 333 (2000)

    Article  Google Scholar 

  18. P. Pirouz, On micropipes and nanopipes in SiC and GaN. Philos. Mag. A 78, 727 (1998)

    Article  Google Scholar 

  19. F.C. Frank, Capillary equilibria of dislocated crystals. Acta Cryst 4, 407 (1951)

    Article  Google Scholar 

  20. S.I. Maximenko, P. Pirouz, T.S. Sudarshan, Open core dislocations and surface energy of SiC. Mater. Sci. Forum 527-529, 439 (2006)

    Article  Google Scholar 

  21. S.I. Weimin, M. Dudley, R. Glass, V. Tsvetkov, C.H. Carter Jr., Hollow-core screw dislocations in 6H-SiC single crystals: a test of Frank’s theory. J. Electron. Mater. 26, 128 (1997)

    Article  Google Scholar 

  22. P. Krishna, S.S. Jiang, A.R. Lang, An optical and X-ray topographic study of giant screw dislocations in silicon carbide. J. Cryst. Growth 71, 41 (1985)

    Article  Google Scholar 

  23. X.R. Huang, M. Dudley, V.M. Vetter, W. Huang, S. Wang, Direct evidence of micropipe-related pure superscrew dislocations in SiC. Appl. Phys. Lett. 74, 355 (1999)

    Google Scholar 

  24. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr., Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image. J. Appl. Crystallogr. 32, 516 (1999)

    Article  Google Scholar 

  25. J. Heindl, W. Dorsch, H.P. Strunk, Dislocation content of micropipes in SiC. Phys. Rev. Lett. 80, 740 (1998)

    Article  Google Scholar 

  26. T.A. Kuhr, E.K. Sanchez, M. Skowronski, Hexagonal voids and the formation of micropipes during SiC sublimation growth. J. Appl. Phys. 89, 4625 (2001)

    Article  Google Scholar 

  27. R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter Jr., SiC seeded crystal growth. Phys. Status Solidi A 202, 149 (1997)

    Article  Google Scholar 

  28. H. Shiomi, H. Kinoshita, T. Furusho, T. Hayashi, et al., Crystal growth of micropipe free 4H-SiC on 4H-SiC (0 3 -3 8) seed and high purity semi-insulating 6H-SiC. J. Cryst. Growth 292, 188 (2006)

    Article  Google Scholar 

  29. J. Li, O. Filip, B.M. Epelbaum, X. Xu, M. Bickermann, A. Winnacker, Growth of 4H-SiC on rhombohedral (0 1 -1 4) plane seeds. J. Cryst. Growth 308, 41 (2007)

    Article  Google Scholar 

  30. W.F. Knippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 161 (1963)

    Google Scholar 

  31. T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, et al., Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory. J. Cryst. Growth 352, 177 (2012)

    Article  Google Scholar 

  32. K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano, S.I. Nishizawa, Thermodynamic analysis of SiC polytype growth by physical vapor transport method. J. Cryst. Growth 324, 78 (2011)

    Article  Google Scholar 

  33. N. Sugiyama, A. Okamoto, K. Okumura, T. Tani, N. Kamiya, Step structures and dislocations of SiC single crystals grown by modified lely method. J. Cryst. Growth 191, 84 (1998)

    Article  Google Scholar 

  34. Y. Nakano, T. Nakamura, A. Kamisawa, H. Takasu, Investigation of pits formed at oxidation on 4H-SiC. Mater. Sci. Forum 600–630, 377 (2009)

    Google Scholar 

  35. R. Singh, K.G. Irvine, D.C. Capell, J.T. Richmond, D. Berning, A.R. Hefner, Large area ultra-high voltage 4H-SiC p-i-n rectifiers. IEEE Trans. Electron. Devices 49, 2308 (2002)

    Article  Google Scholar 

  36. J. Zhang, P. Alexandrov, T. Burke, J.H. Zhao, 4H-SiC power bipolar junction transistor with a very low specific on-resistance of 2.9 mΩ cm2. IEEE Electron Device Lett. 27, 368 (2006)

    Article  Google Scholar 

  37. S. Ryu, A.K. Agarwal, R. Singh, J.W. Palmour, 1800V NPN bipolar junction transistors in 4H-SiC, 2001. IEEE Electron Device Lett. 22, 124 (2001)

    Article  Google Scholar 

  38. B. Nakamura, I. Tunjishima, S. Yamaguchi, T. Ito, et al., Ultrahigh quality silicon carbide single crystals. Nature 430, 1009 (2004)

    Article  Google Scholar 

  39. N. Ohtani, M. Katsuno, J. Takahashi, et al., Impurity incorporation kinetics during modified-lely growth of SiC. J. Appl. Phys. 83, 4487 (1998)

    Article  Google Scholar 

  40. K. Onoue, T. Nishikawa, M. Katsumo, et al., Nitrogen incorporation kinetics during the sublimation growth of 6H and 4H-SiC. Jpn. J. Appl. Phys. 35, 2240 (1996)

    Article  Google Scholar 

  41. S. Jang, T. Kimoto, H. Matsunami, Deep levels in 6H-SiC wafers and step controlled epitaxial layers. Appl. Phys. Lett. 65, 581 (1994)

    Article  Google Scholar 

  42. A.O. Evwaraye, S.R. Smith, W.C. Mitchel, Shallow and deep levels in n-type 4H-SiC. J. Appl. Phys. 79, 7726 (1996)

    Article  Google Scholar 

  43. M. Katsuno, M. Nakabayashi, T. Fujimoto, et al., Stacking fault formation in highly nitrogen-doped 4H-SiC substrates with different surface preparation conditions. Mater. Sci. Forum 600-630, 341 (2009)

    Google Scholar 

  44. N. Ohtani, M. Katsuno, M. Nakabayashi, et al., Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport. J. Cryst. Growth 311, 1475 (2009)

    Article  Google Scholar 

  45. T. Kato, K. Eto, S. Takagi, T. Miura, et al., Growth of low resistivity n-type 4H-SiC bulk crystals by sublimation method using co-doping technique. Mater. Sci. Forum 778-780, 47 (2014)

    Article  Google Scholar 

  46. N. Schulze, J. Gajowski, K. Semmelroth, M. Laube, G. Pensl, Growth of highly aluminum-doped p-type 6H-SiC single crystals by the modified lely method. Mater. Sci. Forum 353-356, 45 (2001)

    Article  Google Scholar 

  47. P. Hens, U. Kunecke, P. Wellmann, Aluminum p-type doping of bulk SiC single crystals by tri-methyl-aluminum. Mater. Sci. Forum 600-603, 19 (2009)

    Article  Google Scholar 

  48. K. Eto, H. Suo, T. Kato, H. Okumura, Growth of low resistivity p-type 4H-SiC crystals by sublimation with using aluminum and nitrogen co-doping. Mater. Sci. Forum 858, 77 (2015)

    Article  Google Scholar 

  49. J. Schneider, H.D. Muller, M. Maier, W. Wilkening, F. Fuchs, Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide. Appl. Phys. Lett. 56, 1184 (1990)

    Article  Google Scholar 

  50. M. Bickermann, R. Weingartner, A. Winnacker, On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield. J. Cryst. Growth 254, 390 (2003)

    Article  Google Scholar 

  51. G. Augustine, V. Balakrishna, C.D. Brandt, Growth and characterization of high purity SiC single crystals. J. Cryst. Growth 211, 339 (2000)

    Article  Google Scholar 

  52. J.R. Jenny, S. Muller, A. Powell, V.F. Tsvetkov, et al., High purity semi-insulating 4H-SiC grown by the seeded sublimation method. J. Electron. Mater. 31, 366 (2002)

    Article  Google Scholar 

  53. J.R. Jenny, D.P. Malta, S. Muller, et al., High purity semi-insulating 4H-SiC for microwave device applications. J. Electron. Mater. 32, 432 (2003)

    Article  Google Scholar 

  54. T. Sasaki, T. Matsuoka, Substrate-polarity dependence of metal-organic vapor-phase epitaxy-grown GaN on SiC. J. Appl. Phys. 64, 4531 (1988)

    Article  Google Scholar 

  55. P. Kung, C.J. Sun, A. Saxler, H. Ohsato, M. Razeghi, Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 75, 4515 (1994)

    Article  Google Scholar 

  56. S. Yu, S. Karpov, A.V. Kulik, I.A. Zhmakin, Y.N. Makarov, et al., Analysis of sublimation growth of bulk SiC crystals in tantalum container. J. Cryst. Growth 211, 347 (2000)

    Article  Google Scholar 

  57. N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, et al., Growth of large high-quality SiC single crystals. J. Cryst. Growth 237–239, 1180 (2002)

    Article  Google Scholar 

  58. W.I. Clark, A.J. Shih, C.W. Hardin, R.I. Lemaster, et al., Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force. Int J Mach Tool Manu 43, 523 (2003)

    Article  Google Scholar 

  59. H.K. Xu, S. Jahanmir, L.K. Ives, Material removal and damage formation mechanisms in grinding silicon nitride. J. Mater. Res. 11, 1717 (1996)

    Article  Google Scholar 

  60. M. Forsberg, N. Keskitalo, J. Olsson, Effect of dopants on chemical mechanical polishing of silicon. Microelectron. Eng. 60, 149 (2002)

    Article  Google Scholar 

  61. Z. Zhong, Surface finish of precision machined advanced materials. J. Mater. Process. Technol. 122, 173 (2002)

    Article  Google Scholar 

  62. M. Jiang, R. Komanduri, On the finishing of Si3N4 balls for bearing applications. Wear 215, 267 (1998)

    Article  Google Scholar 

  63. P. Vicente, D. David, J. Camassel, Raman scattering as a probing method of subsurface damage in SiC. Mater. Sci. Eng. B 80, 348 (2001)

    Article  Google Scholar 

  64. M. Jiang, N.O. Wood, R. Komanduri, On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear 220, 59 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Xu, X., Hu, X., Chen, X. (2019). SiC Single Crystal Growth and Substrate Processing. In: Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99211-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99210-5

  • Online ISBN: 978-3-319-99211-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics