Skip to main content

Domestication of Eggplants: A Phenotypic and Genomic Insight

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Agriculture, and in particular systematic and repeated cultivation of plants, is one of the main characteristics of post-Neolithic sedentary human societies. Deciphering the domestication pathways that have allowed for extensive cultivation of crops is of great scientific importance: first, because it can reveal the patterns and processes of human-induced selection and contribute to the knowledge of the genetic basis of adaptive traits, and second, because identifying the times and locations of domestication is crucial to the understanding of our own evolutionary history, in particular for the last ca. 12,000 years. Finally, the identification of genes involved in domestication could offer potential for future crop improvement. In some instances, knowledge from one crop can be transferred to another to reveal broad patterns, as well as the extent to which parallel evolution has given rise to the crops we rely on today. There have been a number of studies into eggplant domestication, but clarifying the routes and even the number of domestications has until today been limited. This is due to (1) partial knowledge on the identity of eggplant wild relatives, (2) sparse sampling (both in terms of species/accessions and types of data), and (3) inadequacy of the statistical tools used for phylogenetic/demographic inferences. However, the most recent analyses of Solanum melongena point to a single domestication and significant crop-wild-weedy gene flow, which likely hampered earlier phylogenetic attempts. Here, we provide an overview of the current understanding of the domestication frameworks for the three eggplants, Solanum melongena, S. aethiopicum and S. macrocarpon. First, we detail the phenotypical traits of the crops and of their wild progenitors. Then, we detail the historical hypotheses on domestication of eggplants and, when possible, we re-evaluate them in the light of the genomic data generated within the last couple of years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aubriot X, Knapp S, Syfert MM, Poczai P, Buerki S (2018) Shedding new light on the origin and spread of the brinjal eggplant (Solanum melongena L.) and its relatives. Am J Bot 105(7):1175–1187. https://doi.org/10.1002/ajb2.1133

    Article  Google Scholar 

  • Aubriot X, Singh P, Knapp S (2016) Tropical Asian species show that the old world clade of ‘spiny solanums’ (Solanum subgenus Leptostemonum pro parte: Solanaceae) is not monophyletic. Bot J Linn Soc 181(2):199–223. https://doi.org/10.1111/boj.12412

    Article  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Vale G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L, Rotino GL (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS ONE 7(8):e43740. https://doi.org/10.1371/journal.pone.0043740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker G (2011) The cost of cultivation. Nature 473:163–164

    Article  CAS  Google Scholar 

  • Bukenya-Ziraba R (2004) Solanum anguivi. In: Grubben GJH, Denton OA (eds) PROTA, plant resources of tropical Africa, vol 2-vegetables. pp 480–482

    Google Scholar 

  • Bukenya-Ziraba R, Bonsu KO (2004) Solanum macrocarpon. In: Grubben GJH, Denton OA (eds) Plants resources of tropical Africa vol 2-vegetables. Backhuys, Leiden, Netherlands, pp 484–488

    Google Scholar 

  • Bukenya ZR, Carasco JF (1994) Biosystematic study of Solanum macrocarponS. dasyphyllum complex in Uganda and relations with Solanum linnaeanum. East African Agric For J 59(3):187–204

    Article  Google Scholar 

  • Bukenya ZR, Carasco JF (1995) Crossability and cytological studies in Solanum macrocarpon and Solanum linnaeanum (Solanaceae). Euphytica 86(1):5–13. https://doi.org/10.1007/bf00035933

    Article  Google Scholar 

  • Bukenya ZR, Carasco JF (1999) Ethnobotanical aspects of Solanum L. (Solanaceae) in Uganda. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV, advances in biology and utilization. The royal botanic gardens, Kew, pp 345–360

    Google Scholar 

  • Burke JM, Burger JC, Chapman MA (2007) Crop evolution: from genetics to genomics. Curr Opin Genet Dev 17(6):525–532

    Article  CAS  Google Scholar 

  • Cericola F, Portis E, Toppino L, Barchi L, Acciarri N, Ciriaci T, Sala T, Rotino GL, Lanteri S (2013) The population structure and diversity of eggplant from Asia and the Mediterranean basin. PLoS ONE 8(9). https://doi.org/10.1371/journal.pone.0073702

    Article  CAS  Google Scholar 

  • Chakrabarti M, Zhang N, Sauvage C, Munos S, Blanca J, Canizares J, Jose Diez M, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E (2013) A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA 110(42):17125–17130. https://doi.org/10.1073/pnas.1307313110

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40(6):800–804. https://doi.org/10.1038/ng.144

    Article  CAS  PubMed  Google Scholar 

  • Daunay M-C, Lester RN, Ano G (2001a) Eggplant. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. Science Publishers, Montpellier, pp 199–222

    Google Scholar 

  • Daunay MC (2008) Eggplant. In: Prohens J, Nuez F (eds) Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 163–220

    Chapter  Google Scholar 

  • Daunay MC, Aubert S, Frary A, Doganlar S, Lester RN, Barendse G, van der Weerden G, Hennart JW, Haanstra J, Dauphin F, Jullian E (2004) Eggplant (Solanum melongena) fruit colour: pigments, measurements and genetics. In: Voorrips RE (ed) Proceedings of the XIIth EUCARPIA meeting on genetics and breeding of Capsicum and eggplant, 17–19 May 2004. Noordwijkerhout, The Netherlands. pp 108–116

    Google Scholar 

  • Daunay MC, Dalmon A, Lester RN (1999) Management of a collection of Solanum species for eggplant (Solanum melongena L.) breeding purposes. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. The Royal Botanic Gardens, Kew, pp 369–383

    Google Scholar 

  • Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (ed) Handbook of vegetables. Studium Press LLC, pp 258–322

    Google Scholar 

  • Daunay MC, Lester RN, Ano G (2001b) Eggplant. In: Charrier A, Jacquot M, Hamon S, Nicolas D (ed) Tropical plant breeding. CIRAD and Science Publishers, Inc., pp 199–222

    Google Scholar 

  • Daunay MC, Lester RN, Laterrot H (1991) The use of wild species for the genetic improvement of Brinjal eggplant (Solanum melongena) and tomato (Lycopersicum esculentum). In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, and evolution. Kew: Royal Botanic Gardens. Royal Botanic Gardens, Kew

    Google Scholar 

  • Davidar P, Snow AA, Rajkumar M, Pasquet R, Daunay MC, Mutegi E (2015) The potential for crop to wild hybridization in eggplant (Solanum melongena; Solanaceae) in southern India. Am J Bot 102(1):129–139. https://doi.org/10.3732/ajb.1400404

    Article  PubMed  Google Scholar 

  • Deb DB (1979) Solanaceae in India. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae, vol 7 Linnean Society Symposium. Academic Press for the Linnaean Society of London, pp 87–112

    Google Scholar 

  • Decker DS (1985) Numerical analysis of allozyme variation in Cucurbita pepo. Econ Bot 39(3):300–309. https://doi.org/10.1007/bf02858800

    Article  Google Scholar 

  • De-Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886

    Article  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418(6898):700–707

    Article  CAS  Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1984) Isoenzymatic variation in Zea (Gramineae). Syst Bot 9:203–218

    Article  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161(4):1713–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Frary A, Daunay M-C, Huvenaars K, Mank R, Doğanlar S (2014) QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica 197(2):211–228. https://doi.org/10.1007/s10681-013-1060-6

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  Google Scholar 

  • Fu YB (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128(11):2131–2142

    Article  Google Scholar 

  • Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S (2017) Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena background. Front Plant Sci 8:(1477). https://doi.org/10.3389/fpls.2017.01477

  • Harris DR (1990) Vavilov’s concept of centres of origin of cultivated plants: its genesis and its influence on the study of agricultural origins. Biol J Linn Soc 39:7–16

    Article  Google Scholar 

  • Hurtado M, Vilanova S, Plazas M, Gramazio P, Fonseka HH, Fonseka R, Prohens J (2012) Diversity and relationships of eggplants from three geographically distant secondary centers of diversity. Plos One 7(7). https://doi.org/10.1371/journal.pone.0041748

    Article  CAS  Google Scholar 

  • Jayakumar K, Murugan K (2016) Solanum alkaloids and their pharmaceutical roles: a review. J Anal Pharm Res 3(6):00075. https://doi.org/10.15406/japlr.2016.03.00075

  • Karihaloo JL, Brauner S, Gottlieb LD (1995) Random amplified polymorphic DNA variation in the eggplant, Solanum melongena L. (Solanaceae). Theor Appl Genet 90:767–770

    Google Scholar 

  • Karihaloo JL, Kaur M, Singh S (2002) Seed protein diversity in Solanum melongena L. and its wild and weedy relatives. Genet Resour Crop Evol 49(6):533–539. https://doi.org/10.1023/a:1021288108928

    Article  Google Scholar 

  • Karihaloo JL, Rai M (1995) Significance of morphological variability in Solanum insanum L. (sensu lato). Plant Genetic Resour Newsl 103 (24–26)

    Google Scholar 

  • Kaushik P, Gramazio P, Vilanova S, Raigon MD, Prohens J, Plazas M (2017) Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding. Food Res Int 102:392–401. https://doi.org/10.1016/j.foodres.2017.09.028

    Article  CAS  PubMed  Google Scholar 

  • Khan R (1979) Solanum melongena and its ancestral forms. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press for the Linnaean Society of London, pp 629–636

    Google Scholar 

  • Knapp S (2008) Species concepts and floras: what are species for? Biol J Linn Soc 95(1):17–25

    Article  Google Scholar 

  • Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS ONE 8(2):e57039. https://doi.org/10.1371/journal.pone.0057039

    Article  CAS  Google Scholar 

  • Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, Barton L, Climer Vigueira C, Denham T, Dobney K, Doust AN, Gepts P, Gilbert MT, Gremillion KJ, Lucas L, Lukens L, Marshall FB, Olsen KM, Pires JC, Richerson PJ, Rubio de Casas R, Sanjur OI, Thomas MG, Fuller DQ (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA 111(17):6139–6146. https://doi.org/10.1073/pnas.1323964111

    Article  CAS  PubMed  Google Scholar 

  • Lester RN (1979) The use of protein characters in the taxonomy of Solanum and other Solanaceae In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press for the Linnaean Society of London, pp 285–303

    Google Scholar 

  • Lester RN (1986) Taxonomy of scarlet eggplants, Solanum aethiopicum L. Acta Hort 182:125–132

    Article  Google Scholar 

  • Lester RN (1989) Evolution under domestication involving disturbance of genic balance. Euphytica 44:125–132

    Article  Google Scholar 

  • Lester RN, Daunay MC (2003) Diversity of African vegetable Solanum species and its implications for a better understanding of plant domestication. In: Knüpffer H, Ochsmann J (eds) Rudolf Mansfeld and plant genetic resources, vol 22. Schriften zu genetischen Ressourcen (Informationszentrum biologische Vielfalt), Gatersleben (Germany), pp 137–152

    Google Scholar 

  • Lester RN, Hakiza JJH, Stavropoulos N, Teixiera MM (1986) Variation patterns in the African scarlet eggplant Solanum aethiopicum L. In: Styles BT (ed) Infraspecific classification of wild and cultivated plants. Oxford University Press, pp 283–307

    Google Scholar 

  • Lester RN, Hasan SMZ (1991) Origin and domestication of the brinjal eggplant, Solanum melongena, from S. incanum in Africa and Asia. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, UK, Kew, pp 369–387

    Google Scholar 

  • Lester RN, Hawkes JG (2001) Solanaceae. In: Hanelt P (ed) Mansfeld’s Encyclopedia of agricultural and horticultural crops, vol 4. Springer, Berlin, pp 1790–1856

    Google Scholar 

  • Lester RN, Jaeger PML, Bleijendaal-Spierings BHM, Bleijendaal HPO, Holloway HLO (1990) African eggplants—a review of collecting in West Africa. Plant Genetic Resour Newsl 81(82):17–26

    Google Scholar 

  • Lester RN, Niakan L (1986) Origin and domestication of the scarlet eggplant, Solanum aethiopicum, from S. anguivi in Africa In: D’Arcy WG (ed) Solanaceae, biology and systematics. Columbia University Press, pp 433–456

    Google Scholar 

  • Lester RN, Seck A (2004) Solanum aethiopicum L. In: Grubben GJH, Denton OA (eds) PROTA, plant resources of tropical Africa, vol PROTA 2. Vegetables. Backhuys, Leiden, The Netherlands, pp 472–477

    Google Scholar 

  • Lester RN, Thitai GNW (1989) Inheritance in Solanum aethiopicum, the scarlet eggplant. Euphytica 40(1–2):67–74

    Google Scholar 

  • Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99(20):13302–13306. https://doi.org/10.1073/pnas.162485999

    Article  CAS  PubMed  Google Scholar 

  • Luckow M (1995) Species concepts—assumptions, methods, and applications. Syst Bot 20(4):589–605. https://doi.org/10.2307/2419812

    Article  Google Scholar 

  • Mace ES, Lester RN, Gebhardt CG (1999) AFLP analysis of genetic relationships among the cultivated eggplant, Solanum melongena L., and wild relatives (Solanaceae). Theor Appl Genet 99(3):626–633. https://doi.org/10.1007/s001220051277

    Article  CAS  Google Scholar 

  • Mallet J (1995) A species definition for the modern synthesis. Trends Ecol Evol 10(7):294–299

    Article  CAS  Google Scholar 

  • Matu EN (2008) Solanum incanum L. In: Schmelzer GH, Gurib-Fakim A (eds) PROTA. Plant resources of tropical Africa, vol 11-medicinal plants. Wageningen, The Netherlands

    Google Scholar 

  • McLeod MJ, Guttman SI, Eshbaugh WH, Rayle RE (1983) An electrophoretic study of evolution in Capsicum (Solanaceae). Evolution 37(3):562–574. https://doi.org/10.1111/j.1558-5646.1983.tb05573.x

    Article  CAS  PubMed  Google Scholar 

  • Meyer RS, Bamshad M, Fuller DQ, Litt A (2014) Comparing medicinal uses of eggplant and related Solanaceae in China, India, and the Philippines suggests the independent development of uses, cultural diffusion, and recent species substitutions. Econ Bot 68(2):137–152. https://doi.org/10.1007/s12231-014-9267-6

    Article  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012a) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196(1):29–48. https://doi.org/10.1111/j.1469-8137.2012.04253.x

    Article  PubMed  Google Scholar 

  • Meyer RS, Karol KG, Little DP, Nee MH, Litt A (2012b) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogen Evol 63:685–701

    Article  Google Scholar 

  • Meyer RS, Whitaker BD, Little DP, Wu S-B, Kennelly EJ, Long C-L, Litt A (2015) Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry 115:194–206. https://doi.org/10.1016/j.phytochem.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  • Mutegi E, Snow AA, Rajkumar M, Pasquet R, Ponniah H, Daunay M-C, Davidar P (2015) Genetic diversity and population structure of wild/weedy eggplant (Solanum insanum, Solanaceae) in southern India: implications for conservation. Am J Bot 102(1):140–148. https://doi.org/10.3732/ajb.1400403

    Article  PubMed  Google Scholar 

  • N’Gbesso MFDP, Kouassi A, Fondio L, Andé Djidji H (2016) Etude de la diversité intra et interspécifique des caractères phénotypiques chez deux espèces d’aubergines africaines: Solanum macrocarpon L. et Solanum dasyphyllum L. Int J Biol Chem Sci 10(4):1793

    Google Scholar 

  • Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK (2014) Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. Plos One 9(5). https://doi.org/10.1371/journal.pone.0095930

    Article  Google Scholar 

  • Padmini K, Yogeesha HS, Naik LB (2008) Genetics of fresh seed dormancy in brinjal (Solanum melongena). Indian J Agric Sci 78(4):304–307

    Google Scholar 

  • Plazas M, Vilanova S, Gramazio P, Rodriguez-Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H, Kouassi B, Kouassi A, Prohens J (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. J Am Soc Hort Sci 141(1):34–44

    Article  Google Scholar 

  • Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Valè G, Rotino GL (2014) QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE 9(2):e89499. https://doi.org/10.1371/journal.pone.0089499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prohens J, Whitaker BD, Plazas M, Vilanova S, Hurtado M, Blasco M, Gramazio P, Stommel JR (2013) Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum). Ann Appl Biol 162(2):242–257. https://doi.org/10.1111/aab.12017

    Article  CAS  Google Scholar 

  • Ranil RHG, Prohens J, Aubriot X, Niran HML, Plazas M, Fonseka RM, Vilanova S, Fonseka HH, Gramazio P, Knapp S (2017) Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet Resour Crop Evol 64(7):1707–1722. https://doi.org/10.1007/s10722-016-0467-z

    Article  Google Scholar 

  • Sakata Y, Lester RN (1994) Chloroplast DNA diversity in eggplant (Solanum melongena) and its related species S. incanum and S. marginatum. Euphytica 80(1–2):1–4

    Article  CAS  Google Scholar 

  • Sakata Y, Lester RN (1997) Chloroplast DNA diversity in brinjal eggplant (Solanum melongena L.) and related species. Euphytica 97(3):295. https://doi.org/10.1023/a:1003000612441

    Article  CAS  Google Scholar 

  • Salgon S, Jourda C, Sauvage C, Daunay M-C, Reynaud B, Wicker E, Dintinger J (2017) Eggplant resistance to the Ralstonia solanacearum species complex involves both broad-spectrum and strain-specific quantitative trait loci. Front Plant Sci 8:828

    Article  Google Scholar 

  • Sauvage C, Rau A, Aichholz C, Chadoeuf J, Sarah G, Ruiz M, Santoni S, Causse M, David J, Glémin S (2017) Domestication rewired gene expression and nucleotide diversity patterns in tomato. Plant J 91(4):631–645. https://doi.org/10.1111/tpj.13592

    Article  CAS  Google Scholar 

  • Schippers RR (2002) African indigenous vegetables. In: Natural resources international Ltd hds (ed) An overview of the cultivated species

    Google Scholar 

  • Seck A, Sow A (1994) Suppression par voie génétique de la dormance des semences de jaxatu (Solanum aethiopicum L.). RADHORT (FAO), Bulletin de liaison 7:12p

    Google Scholar 

  • Singh AK, Singh M, Singh R, Kumar S, Kalloo G (2006) Genetic diversity within the genus Solanum (Solanaceae) as revealed by RAPD markers. Curr Sci 90(5):711–716

    CAS  Google Scholar 

  • Smykal P, Nelson MN, Berger JD, von Wettberg EJB (2018) The impact of genetic changes during crop domestication. Agron-Basel 8(7). https://doi.org/10.3390/agronomy8070119

    Article  Google Scholar 

  • Toppino L, Barchi L, Lo Scalzo R, Palazzolo E, Francese G, Fibiani M, D’Alessandro A, Papa V, Laudicina VA, Sabatino L, Pulcini L, Sala T, Acciarri N, Portis E, Lanteri S, Mennella G, Rotino GL (2016) Mapping quantitative trait loci affecting biochemical and morphological fruit properties in eggplant (Solanum melongena L.). Front Plant Sci 7:256. https://doi.org/10.3389/fpls.2016.00256

  • Tümbilen Y, Frary A, Daunay MC, Doganlar S (2011) Application of EST-SSRs to examine genetic diversity in eggplant and its close relatives. Turk J Biol 35(2):125–136. https://doi.org/10.3906/biy-0906-57

    Article  CAS  Google Scholar 

  • Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds) 2018: international code of nomenclature for algae, fungi, and plants (Shenzhen code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum vegetable 159. Koeltz Botanical Books, Glashütten. https://doi.org/10.12705/Code.2018

    Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Institut Botanique Appliqué et d’Amélioration des Plantes. State Press, Leningrad, USSR

    Google Scholar 

  • Vavilov NI (ed) (1935) Origin and geography of cultivated plants, vol 1. English Translation, 1994 edn

    Google Scholar 

  • Vilanova S, Manzur JP, Prohens J (2012) Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed 30(2):647–660. https://doi.org/10.1007/s11032-011-9650-2

    Article  CAS  Google Scholar 

  • Vorontsova MS, Knapp S (eds) (2016) A revision of the “spiny solanums”, Solanum subgenus Leptostemonum (Solanaceae), in Africa and Madagascar, vol 99. Systematic botany monographs. The American society of plant taxonomists

    Google Scholar 

  • Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173(2):176–193. https://doi.org/10.1111/boj.12053

    Article  Google Scholar 

  • Wang JX, Gao TG, Knapp S (2008) Ancient Chinese literature reveals pathways of eggplant domestication. Ann Bot 102(6):891–897. https://doi.org/10.1093/aob/mcn179

    Article  PubMed  PubMed Central  Google Scholar 

  • Weese TL, Bohs L (2010) Eggplant origins: out of Africa, into the Orient. Taxon 59:49–56

    Article  Google Scholar 

  • Wu SB, Meyer RS, Whitaker BD, Litt A, Kennelly EJ (2013) A new liquid chromatography-mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. J Chromatogr 1314:154–172. https://doi.org/10.1016/j.chroma.2013.09.017

    Article  CAS  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319(5869):1527–1530

    Article  CAS  Google Scholar 

  • Yogeesha HS, Upreti KK, Padmini K, Bhanuprakash K, Murti GSR (2006) Mechanism of seed dormancy in eggplant (Solanum melongena L.). Seed Sci Technol 34(2):319–325. https://doi.org/10.15258/sst.2006.34.2.07

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Page, A.M.L., Daunay, MC., Aubriot, X., Chapman, M.A. (2019). Domestication of Eggplants: A Phenotypic and Genomic Insight. In: Chapman, M. (eds) The Eggplant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-99208-2_12

Download citation

Publish with us

Policies and ethics