Skip to main content

Crossability and Diversity of Eggplants and Their Wild Relatives

  • Chapter
  • First Online:
The Eggplant Genome

Abstract

Eggplants and related germplasm are a barely unveiled genetic treasure, for reasons developed in Chap. 10. Diversity and interspecific crossability researches focused so far on Solanum melongena L., the economic importance of which towers that of the indigenous African S. aethiopicum L. and S. macrocarpon L. and which consequently attracted most of geneticists’ and breeders’ attention. However, as S. melongena shares many connections with eggplant germplasm as a whole, this chapter pays as much attention to this species as to the other cultivated and wild ones. Their genetic and phenotypic diversity is surveyed and critically analysed in order to place the reader at the crossroads between the present knowledge and desirable future researches in terms of both traits of interest to breeders and methods for assessing the diversity. The dense corpus of information about interspecific crossability is organised across several axes. Conventional sexual crosses and somatic hybridisations are presented separately, given both methods yield genetically different interspecific material. The section devoted to sexual crosses begins with a survey of the interspecific barriers, and with an overview of the crossing results that are discussed in their methodological dimensions, in particular the criteria assessing the success or failure of the crossing experiments. Then, the crossing results are structured according to the combinations of crosses within and between cultivated and wild material. Species crossability is discussed with regard to the genepool concept and to relationship between species assessed by phylogenetics. The section ends up with interspecific hybrid by-products such as male sterilities and information on traits genetics. The chapter turns then to somatic hybridisations; this part is structured according to groups of species (e.g. New World species) used as fusion partners of S. melongena, the pivotal taxon for most of the fusion experiments. The conclusions outline the limits of the present knowledge on eggplants germplasm diversity and crossability and suggest potential new research routes on these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Agents of the bacterial wilt.

  2. 2.

    Transfer is possible either between cultivated eggplants or from wild species to cultivated eggplant, as well as from wild to wild when relevant.

  3. 3.

    The name S. xanthocarpum is extremely tricky because, depending on the author(s) names associated to it, it matches different accepted species names. In this very case that is S. xanthocarpon Schrad. & Wendl. that matches S. virginianum (Daunay et al. 1991).

  4. 4.

    In some cases, mismatch between constitutive pollen tube length and stigma length explains mechanically the incapability of the pollen of one species to reach the ovules of another species.

  5. 5.

    Parthenocarpic fruits can be the response of the ovary to hormones released through the stimulus of pollination.

  6. 6.

    Endosperm is a triploid tissue issued from the fertilization of two maternal and one paternal nuclei. Hence maternal and paternal genetic dosages differ (2 vs. 1).

  7. 7.

    Both these last troubles can be solved either with hormonal treatment of the hybrid plantlets in vitro (e.g. IAA, gibberellic acid) or by their grafting onto roots of one of their parents.

  8. 8.

    In any given species, chromosomes of each pair share a same genetic structure (homology), which allows their close pairing and the formation of bivalents during diakinesis and metaphase I of meiosis. The word “homeology” was coined for designating, for a given pair, the partial similarity between chromosomes originating from different parental species. When homeology between parental chromosomes is sufficient, the meiosis of an interspecific hybrid is possible, but because chromosomes similarity it incomplete, various abnormalities occur at various frequencies during the course of the meiotic divisions.

  9. 9.

    The fertility of the hybrids S. capense × S. melongena and S. cyaneopurpureum × S. melongena being not indicated (Table 11.7) we hypothesize here that they are fertile or partially fertile.

  10. 10.

    Both are found in the same geographical and ecological areas.

  11. 11.

    Because of this interfertility, Olet and Bukenya-Ziraba (2001) suggested S. campylacanthum and S. cerasiferum belong to the same biological species.

  12. 12.

    The biological species concept is based on successful interbreeding between the members of a given (biological) species, and their reproductive isolation from other species.

  13. 13.

    Interestingly, mature fruit colour of the hybrid between S. melongena (yellow) and S. scabrum (purple-black) was red (Oyelana et al. 2009).

  14. 14.

    This name is a synonym of the accepted name S. sessile, an American species of the Geminata Clade. However the species designated under this name in the publications on male sterility is probably another taxon.

  15. 15.

    Namely S. anguivi, S. dasyphyllum, S. incanum, S. insanum, S. lichtensteinii, S. linnaeanum and S. tomentosum.

  16. 16.

    Given P1 is the value of parent 1, P2 the value of parent 2, F1 the value of the F1 (P1 × P2), Heterosis H is calculated as H = 100 * ((F1 − (P1 + P2)/2)/(P1 − P2)/2).

  17. 17.

    Presence of anthocyanins, which confers purple or black fruit colour, is dominant over their absence.

  18. 18.

    Orange (S. violaceum) is dominant over yellow (S. melongena) mature fruit colour.

  19. 19.

    Mature fruits turned orange, an intermediate state between yellow (eggplant) and red (S. aethiopicum).

  20. 20.

    The sexual hybrid also phenotyped in Daunay et al. (1993) displayed 10–30% pollen stainability, very poor fruit set and parthenocarpic fruits.

  21. 21.

    Solanum melongena + S. nigrum PEG fusion between protoplast of Solanum nigrum and iodoacetate-inactivated eggplant protoplasts aimed at transferring atrazine (herbicide) resistance carried out by the chloroplasts of the wild partner into eggplant (Guri and Sink 1988b). The regenerated plants displayed S. nigrum cpDNA pattern and were resistant to atrazine in vitro. The single plant phenotyped resembled S. nigrum had white flowers (although the purple colour of eggplant flower is usually dominant) and sterile (no stainable pollen grains).

    This means that any part of eggplant chromosomes can be integrated.

  22. 22.

    It is possible for instance, that when looked at more closely in the future, eggplants resistance to Fusarium oxysp. f. sp. melongenae will reveal interactions with the fungus diversity, as it is the case for tomato (different genitors control different races of Fusarium oxysp. f. sp. lycopersici).

Literature Cited

  • Adeniji OT, Kusolwa PM, Reuben S (2012) Genetic diversity among accessions of Solanum aethiopicum L. groups based on morpho-agronomic traits. Plant Genet Resour-Charact Util 10(3):177–185. https://doi.org/10.1017/s1479262112000226

    Article  Google Scholar 

  • Al-Ani MN (1991) Biosystematic study in the genus Solanum section Oliganthes. Ph.D., Birmingham (UK)

    Google Scholar 

  • Ali M, Okubo H, Fujieda K (1992) Production and characterization of Solanum amphidiploids and their resistance to bacterial wilt. Sci Hortic 49(3–4):181–196. https://doi.org/10.1016/0304-4238(92)90156-7

    Article  Google Scholar 

  • Ali Z, Xu ZL, Zhang DY, He XL, Bahadur S, Yi JX (2011) Molecular diversity analysis of eggplant (Solanum melongena) genetic resources. Gen Mol Res 10(2):1141–1155. https://doi.org/10.4238/vol10-2gmr1279

    Article  CAS  Google Scholar 

  • Ano G (1990) Amélioration de l’aubergine (Solanum melongena L.) pour la résistance au flétrissement bactérien causé par Pseudomonas solanacearum E.F.S. Journées maraichères CIRAD-ORSTOM-INRA. INRA

    Google Scholar 

  • Ano G, Hébert Y, Prior P, Messiaen CM (1991) A new source of resistance to bacterial wilt of eggplant obtained from a cross: Solanum aethiopicum L. x Solanum melongena L. Agronomie 11:555–560

    Article  Google Scholar 

  • Ano G, Prior P, Manyri J, Vincent C (1989) Stratégies de l’amélioration de l’aubergine (Solanum melongena L.) pour la résistance au fletrissement bactérien causé par Pseudomonas solanacearum E.F.S. In: Degras L (ed) Proceedings of the XXVth annual meeting Caribbean food crop society. Guadeloupe, pp 570–579

    Google Scholar 

  • Asao H, Arai S, Sato T, Hirai M (1994) Characteristics of a somatic hybrid between Solanum melongena L. and Solanum sanitwongsei Craib. Breed Sci 44(3):301–305

    Article  Google Scholar 

  • Aubert S, Daunay MC, Pochard E (2009a) Saponosides stéroidiques de l’aubergine (Solanum melongena L.). I. intérêt alimentaire, méthodologie d’analyse, localisation dans le fruit. Agronomie 9:641–651

    Article  Google Scholar 

  • Aubert S, Daunay MC, Pochard E (2009b) Saponosides stéroidiques de l’aubergine (Solanum melongena L.). II. Variation des teneurs liées aux conditions de récolte, aux génotypes et à la quantité de graines. Agronomie 9:751–758

    Article  Google Scholar 

  • Aubriot X, Knapp S, Syfert MM, Poczai P, Buerki S (2018) Shedding new light on the origin and spread of the brinjal eggplant (Solanum melongena L.) and its relatives. Am J Bot 105(7):1175–1187. https://doi.org/10.1002/ajb2.1133

    Article  PubMed  Google Scholar 

  • Aubriot X, Singh P, Knapp S (2016) Tropical Asian species show that the Old World clade of ‘spiny solanums’ (Solanum subgenus Leptostemonum pro parte: Solanaceae) is not monophyletic. Bot J Linnean Soc 181(2):199–223. https://doi.org/10.1111/boj.12412

    Article  Google Scholar 

  • Behera TK, Singh N (2002) Inter-specific crosses between eggplant (Solanum melongena L.) with related Solanum species. Sci Hortic 95(1–2):165–172. https://doi.org/10.1016/s0304-4238(02)00019-5

    Article  Google Scholar 

  • Bletsos F, Roupakias D, Tsaktsira M, Scaltsoyjannes A (2004) Production and characterization of interspecific hybrids between three eggplant (Solanum melongena L.) cultivars and Solanum macrocarpon L. Sci Hortic 101(1–2):11–21. https://doi.org/10.1016/j.scienta.2003.09.011

    Article  CAS  Google Scholar 

  • Bletsos FA, Roupakias DG, Tsaktsira ML, Scaltsoyjannes AB, Thanassoulopoulos CC (1998) Interspecific hybrids between three eggplant (Solanum melongena L.) cultivars and two wild species (Solanum torvum Sw. and Solanum sisymbriifolium Lam.). Plant Breed 117(2):159–164. https://doi.org/10.1111/j.1439-0523.1998.tb01471.x

    Article  Google Scholar 

  • Borgato L, Conicella C, Pisani F, Furini A (2007) Production and characterization of arboreous and fertile Solanum melongena plus Solanum marginatum somatic hybrid plants. Planta 226(4):961–969. https://doi.org/10.1007/s00425-007-0542-y

    Article  CAS  PubMed  Google Scholar 

  • Boyaci F, Unlu A, Abak K (2012) Screening for resistance to Fusarium wilt of some cultivated eggplants and wild Solanum accessions. In: Leitao JM (ed) Xxviii international horticultural congress on science and horticulture for people, vol 935. Acta Horticulturae. Int Soc Horticultural Science, Lisbon (Portugal), pp 23–27

    Google Scholar 

  • Boyaci HF, Unlu A, Abak K (2011) Genetic analysis of resistance to wilt caused by Fusarium (Fusarium oxysporum melongenae) in eggplant (Solanum melongena). Indian J Agric Sci 81(9):812–815

    Google Scholar 

  • Bui HH, Serra V, Pages L (2015) Root system development and architecture in various genotypes of the Solanaceae family. Botany 93 (8):465–474. https://doi.org/10.1139/cjb-2015-0008

    Article  Google Scholar 

  • Bukenya ZR, Carasco JF (1995) Crossability and cytological studies in Solanum macrocarpon and Solanum linnaeanum (Solanaceae). Euphytica 86(1):5–13. https://doi.org/10.1007/bf00035933

    Article  Google Scholar 

  • Callano KJL, Huelgas VC, Mendioro MS (2015) Cytogenetics of Solanum aethiopicum L., S-melongena L. and their F-1 hybrids and the mechanism of hybrid sterility and breakdown. Philipp J Crop Sci 40(2):33–44

    Google Scholar 

  • Cao BH, Lei JJ, Wang Y, Lü YQ, Chen GH (2009) Inter-specific hybridization between Solanum melongena and S. torvum. Acta Horticulturae Sinica 36(2):209–214

    Google Scholar 

  • Cericola F, Portis E, Toppino L, Barchi L, Acciarri N, Ciriaci T, Sala T, Rotino GL, Lanteri S (2013) The population structure and diversity of eggplant from Asia and the Mediterranean Basin. Plos One 8(9). https://doi.org/10.1371/journal.pone.0073702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowanski S, Adamski Z, Marciniak P, Rosinski G, Buyukguzel E, Buyukguzel K, Falabella P, Scrano L, Ventrella E, Lelario F, Bufo SA (2016) A review of bioinsecticidal activity of solanaceae alkaloids. Toxins 8(3). https://doi.org/10.3390/toxins8030060

    Article  PubMed Central  CAS  Google Scholar 

  • Clain C, Da Silva D, Fock I, Vaniet S, Carmeille A, Gousset C, Sihachakr D, Luisetti J, Kodja H, Besse P (2004) RAPD genetic homogeneity and high levels of bacterial wilt tolerance in Solanum torvum Sw. (Solanaceae) accessions from Reunion Island. Plant Sci 166(6):1533–1540. https://doi.org/10.1016/j.plantsci.2004.02.006

    Article  CAS  Google Scholar 

  • Collonnier C, Fock I, Kashyap V, Rotino GL, Daunay MC, Lian Y, Mariska IK, Rajam MV, Servaes A, Ducreux G, Sihachakr D (2001a) Applications of biotechnology in eggplant. Plant Cell, Tissue Organ Cult 65(2):91–107. https://doi.org/10.1023/a:1010674425536

    Article  CAS  Google Scholar 

  • Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Sihachakr D (2003a) GISH confirmation of somatic hybrids between Solanum melongena and S-torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiol Biochem 41(5):459–470. https://doi.org/10.1016/s0981-9428(03)00054-8

    Article  CAS  Google Scholar 

  • Collonnier C, Mulya K, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Ducreux G, Sihachakr D (2001b) Source of resistance against Ralstonia solanacearum in fertile somatic hybrids of eggplant (Solanum melongena L,) with Solanum aethiopicum L. Plant Sci 160(2):301–313. https://doi.org/10.1016/s0168-9452(00)00394-0

    Article  CAS  PubMed  Google Scholar 

  • Collonnier U, Fock I, Daunay MC, Servaes A, Vedel F, Sijak-Yakovlev S, Souvannavong V, Sihachakr D (2003b) Somatic hybrids between Solanum melongena and S. sisymbriifolium, as a useful source of resistance against bacterial and fungal wilts. Plant Sci 164(5):849–861. https://doi.org/10.1016/s0168-9452(03)00075-x

    Article  CAS  Google Scholar 

  • Cürük S, Dayan A (2018) Production of diploid and amphidiploid interspecific hybrids of eggplant and Solanum torvum and pollen fertility. J Anim Plant Sci 28(5):1485–1492

    Google Scholar 

  • Daunay MC (1987–1988) Recherches sur l’aubergine. Rapport d’activité de la station d’amélioration des plantes maraîchères vol 1987–1988. INRA, Montfavet

    Google Scholar 

  • Daunay MC (2008) Eggplant. In: Prohens J, Nuez F (eds) Handbook of crop breeding, Vegetables: Fabaceae, Liliaceae, Umbelliferae, and Solanaceae. Springer, New York, pp 163–220

    Google Scholar 

  • Daunay MC, Chaput MH, Sihachakr D, Allot M, Vedel F, Ducreux G (1993) Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theor Appl Genet 85(6–7):841–850

    Article  Google Scholar 

  • Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (eds) Handbook of vegetables. Studium press LLC, pp 258–322

    Google Scholar 

  • Daunay MC, Hennart JW, Salgon S, Dintinger J (2016) Eggplant resistance to bacterial wilt and to Fusarium wilt: is there a link? In: Ertsey-Peregi K, Füstös Z, Palotas G, Csillery G (eds) XVI. Eucarpia Capsicum and Eggplant meeting, Kecskemet, Hungary, 12–14 September 2016, pp 99–111

    Google Scholar 

  • Daunay MC, Lester RN, Ano G (2001) Eggplant. In: Charrier AJ, Hamon S; Nicolas D (eds) Tropical plant breeding. CIRAD and Science Publishers, Inc., pp 199–222

    Google Scholar 

  • Daunay MC, Lester RN, Dalmon A, Ferri M, Kapilima WMPA, Jullian E (1998) The use of wild genetic resources for eggplant (Solanum melongena) breeding. II. Crossability and fertility of interspecific hybrids. In: Palloix A, Daunay MC (eds) Xth meeting on genetics and breeding of Capsicum and eggplant, Sept 7–11, 1998. INRA, Avignon (France), pp 19–24

    Google Scholar 

  • Daunay MC, Lester RN, Laterrot H (1991) The use of wild species for the genetic improvement of Brinjal Egpplant (Solanum melongena) and Tomato (Lycopersicon esculentum). In: Hawkes JG, Lester RN, Nee M, Estrada-R N (eds) Solanaceae III, taxonomy, chemistry, evolution. The Royal Botanic Gardens (Kew, U.K.) for the Linnean Society of London, pp 389–412

    Google Scholar 

  • Demir K, Bakir M, Sarikamis G, Acunalp S (2010) Genetic diversity of eggplant (Solanum melongena) germplasm from Turkey assessed by SSR and RAPD markers. Gen Mol Res 9(3):1568–1576. https://doi.org/10.4238/vol9-3gmr878

    Article  CAS  Google Scholar 

  • Devi CP, Munshi AD, Behera TK, Choudhary H, Vinod Gurung B, Saha P (2015) Cross compatibility in interspecific hybridization of eggplant, Solanum melongena, with its wild relatives. Sci Hortic 193:353–358. https://doi.org/10.1016/j.scienta.2015.07.024

    Article  CAS  Google Scholar 

  • Echeverría-Londoño S, Särkinen T, Fenton IS, Knapp S, Purvis A (2018) Dynamism and context dependency in the diversification of the megadiverse plant genus Solanum L. (Solanaceae). bioRxiv: 348961. https://doi.org/10.1101/348961

  • Fang M, Mao R, Xie W (1985) Breeding of cytoplasmically inherited male sterile lines of eggplant (Solanum melongena L.). Acta Horticulturae Sinica 12:261–266

    Google Scholar 

  • Garcia-Fortea E, Gramazio P, Vilanova S, Fita A, Mangino G, Villanueva G, Arrones A, Knapp S, Prohens J, Plazas M (2019) First successful backcrossing towards eggplant (Solanum melongena L.) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci Hortic 246:563–573

    Article  Google Scholar 

  • Gisbert C, Prohens J, Nuez F (2011a) Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. Int J Plant Prod 5(4):367–380

    Google Scholar 

  • Gisbert C, Prohens J, Raigon MD, Stommel JR, Nuez F (2011b) Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Sci Hortic 128(1):14–22. https://doi.org/10.1016/j.scienta.2010.12.007

    Article  Google Scholar 

  • Gleddie S, Keller WA, Setterfield G (1985) Plant regeneration from tissue, cell and protoplast cultures of several wild Solanum species. J Plant Physiol 119(5):405–418. https://doi.org/10.1016/s0176-1617(85)80005-5

    Article  CAS  Google Scholar 

  • Gleddie S, Keller WA, Setterfield G (1986) Production and characterization of somatic hybrids between Solanum melongena L. and Solanum sisymbriifolium Lam. Theor Appl Genet 71(4):613–621

    Google Scholar 

  • Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci 168(2):319–327. https://doi.org/10.1016/j.plantsci.2004.07.034

    Article  CAS  Google Scholar 

  • Gowda PHR, Shivashankar KT, Joshi S (1990) Interspecific hybridization between Solanum melongena and Solanum macrocarpon—study of the F1 hybrid plants. Euphytica 48(1):59–61

    Google Scholar 

  • Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S (2017b) Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena Background. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01477

  • Gurbuz N, Karabey F, Ozturk TK, Kilinc A, Frary A, Doganlar S (2015) Glycoalkaloid isolation from Solanum linnaeanum berries. Fruits 70(6):371-+. https://doi.org/10.1051/fruits/2015037

    Article  Google Scholar 

  • Guri A, Sink KC (1988a) Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum. Theor Appl Genet 76(4):490–496

    Article  CAS  PubMed  Google Scholar 

  • Guri A, Sink KC (1988c) Organelle composition in somatic hybrids between an atrazine resistant biotype of Solanum nigrum and Solanum melongena. Plant Sci 58(1):51–58. https://doi.org/10.1016/0168-9452(88)90153-7

    Article  CAS  Google Scholar 

  • Guri A, Sink KC (1988a) Interspecific somatic hybrid plants between eggplant (Solanum melongena L.) and Solanum torvum. Hortscience 23(3):786–786

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hasan SMZ (1989) Biosystematic study of Solanum melongena L. in Asia and Africa. Ph.D., Birmingham (UK)

    Google Scholar 

  • Hasnunnahar M, Khan MMR, Isshiki S (2012) Pollen and seed fertility of three functional male-sterile lines of eggplant with the wild Solanum cytoplasms. Sci Hortic 139:58–61. https://doi.org/10.1016/j.scienta.2012.03.004

    Article  Google Scholar 

  • Hébert Y (1985) résistance comparée de 9 espèces du genre Solanum au flétrissement bactérien (Pseudomonas solanacearum) at au nématode Meloidogyne incognita. Intérêt pour l’Amélioration de l’aubergine (Solanum mlelongena L.) en zone tropicale humide. Agronomie 5(1):27–32. https://doi.org/10.1051/agro:19850104

    Article  Google Scholar 

  • Hurtado M, Vilanova S, Plazas M, Gramazio P, Fonseka HH, Fonseka R, Prohens J (2012) Diversity and relationships of eggplants from three geographically distant secondary centers of diversity. Plos One 7(7). https://doi.org/10.1371/journal.pone.0041748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IBPGR (ed) (1990) Descriptors for eggplants/Descripteurs pour l’aubergine. International Board for Plant Genetic Resources Rome

    Google Scholar 

  • Isshiki S, Kawajiri N (2002) Effect of cytoplasm of Solanum violaceum Ort. on fertility of eggplant (S-melongena L.). Sci Hortic 93(1):9–18. https://doi.org/10.1016/s0304-4238(01)00314-4

    Article  Google Scholar 

  • Isshiki S, Okubo H, Fujieda K (2000) Segregation of isozymes in selfed progenies of a synthetic amphidiploid between Solanum integrifolium and S-melongena. Euphytica 112(1):9–14. https://doi.org/10.1023/a:1003841415838

    Article  CAS  Google Scholar 

  • Isshiki S, Suzuki S, Yamashita K (2003) RFLP analysis of mitochondrial DNA in eggplant and related Solanum species. Genet Resour Crop Evol 50(2):133–137. https://doi.org/10.1023/a:1022954229295

    Article  CAS  Google Scholar 

  • Isshiki S, Taura T (2003) Fertility restoration of hybrids between Solanum melongena L. and S. aethiopicum L. Gilo Group by chromosome doubling and cytoplasmic effect on pollen fertility. Euphytica 134(2):195–201. https://doi.org/10.1023/b:euph.0000003883.39440.6d

    Article  Google Scholar 

  • Iwamoto Y, Hirai M, Ohmido N, Fukui K, Ezura H (2007) Fertile somatic hybrids between Solanum integrifolium and S. sanitwongsei (syn. S. kurzii) as candidates for bacterial wilt-resistant rootstock of eggplant. Plant Biotechnol 24(2):179–184. https://doi.org/10.5511/plantbiotechnology.24.179

    Article  Google Scholar 

  • Jadari R, Sihachakr D, Rossignol L, Ducreux G (1992) Transfer of resistance to Verticillium dahliae Kleb. from Solanum torvum Sw. into potato (Solanum tuberosum L.) by protoplast electrofusion. Euphytica 64(1–2):39–47

    Google Scholar 

  • Jarl CI, Rietveld EM, de Haas JM (1999) Transfer of fungal tolerance through interspecific somatic hybridisation between Solanum melongena and S. torvum. Plant Cell Rep 18(9):791–796. https://doi.org/10.1007/s002990050663

    Article  CAS  Google Scholar 

  • Jayakumar K, Murugan K (2016) Solanum alkaloids and their pharmaceutical roles: a review. J Anal Pharm Res 3(6):00075. https://doi.org/10.15406/japlr.2016.03.00075

    Article  Google Scholar 

  • Jose RS, Plazas M, Sanchez-Mata MC, Camara M, Prohens J (2016) Diversity in composition of scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants and of interspecific hybrids between S. aethiopicum and common eggplant (S. melongena). J Food Compos Anal 45:130–140. https://doi.org/10.1016/j.jfca.2015.10.009

    Article  CAS  Google Scholar 

  • Kaan F (1973) Etude de l’hérédité de la résistance de l’aubergine (Solanum melongena L.) à l’anthracnose des fruits (Colletotrichum gloeosporiodes f. sp. melongenae Penzig Fournet). Annales de l’amélioration des plantes 23(2):127–131

    Google Scholar 

  • Kameya T, Miyazawa N, Toki S (1990) Production of somatic hybrids between Solanum melongena and S. integrifolium Poir. Jpn J Breed 40(4):429–434

    Article  Google Scholar 

  • Kashyap V, Kumar SV, Collonnier C, Fusari F, Haicour R, Rotino GL, Sihachakr D, Rajam M (2003) Biotechnology of eggplant. Sci Hortic 97(1):1–25. https://doi.org/10.1016/s0304-4238(02)00140-1

    Article  CAS  Google Scholar 

  • Kaushik P, Gramazio P, Vilanova S, Raigon MD, Prohens J, Plazas M (2017) Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding. Food Res Int 102:392–401. https://doi.org/10.1016/j.foodres.2017.09.028

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Prohens J, Vilanova S, Gramazio P, Plazas M (2016) Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00677

  • Khan MMR, Hasnunnahar M, Isshiki S (2013a) Production of amphidiploids of the hybrids between Solanum macrocarpon and eggplant. HortScience 48(4):422–424

    Article  Google Scholar 

  • Khan MMR, Hasnunnahar M, Iwayoshi M, Isshiki S (2013b) Pollen and seed fertility of the male fertile lines having the fertility restorer gene in three CMS systems of eggplant. Sci Hortic 157:39–44. https://doi.org/10.1016/j.scienta.2013.04.010

    Article  CAS  Google Scholar 

  • Khan MMR, Hasnunnahar M, Iwayoshi M, Isshiki S (2014) Fertility restoration in three CMS systems of eggplant by the Rf genes of each other’s systems and their SCAR marker. Sci Hortic 172:149–154. https://doi.org/10.1016/j.scienta.2014.04.013

    Article  CAS  Google Scholar 

  • Khan MMR, Hasnunnahar M, Iwayoshi M, Ogura-Tsujita Y, Isshiki S (2015) Pollen degeneration in three functional male-sterile lines of eggplant with the wild Solanum cytoplasms. Hortic Environ Biotechnol 56(3):350–357. https://doi.org/10.1007/s13580-015-0015-3

    Article  CAS  Google Scholar 

  • Khan MMR, Hasnunnahar M, Iwayoshi M, Ogura-Tsujita Y, Isshiki S (2017) Pollen and seed fertility differences of the backcross progenies between Solanum virginianum and eggplant with different inheritance pattern of chloroplast DNA. Sci Hortic 218:193–197. https://doi.org/10.1016/j.scienta.2017.02.031

    Article  CAS  Google Scholar 

  • Khan MMR, Isshiki S (2008) Development of a male sterile eggplant by utilizing the cytoplasm of Solanum virginianum and a biparental transmission of chloroplast DNA in backcrossing. Sci Hortic 117(4):316–320. https://doi.org/10.1016/j.scienta.2008.05.006

    Article  CAS  Google Scholar 

  • Khan MMR, Isshiki S (2009) Functional male-sterility expressed in eggplant (Solanum melongena L.) containing the cytoplasm of S. kurzii Brace & Prain. J Horticult Sci Biotechnol 84(1):92–96. https://doi.org/10.1080/14620316.2009.11512486

    Article  Google Scholar 

  • Khan MMR, Isshiki S (2010) Development of the male-sterile line of eggplant utilizing the cytoplasm of Solanum aethiopicum L. Aculeatum Group. J Jpn Soc Hortic Sci 79(4):348–353. https://doi.org/10.2503/jjshs1.79.348

    Article  CAS  Google Scholar 

  • Khan MMR, Isshiki S (2011) Development of a cytoplasmic male-sterile line of eggplant (Solanum melongena L.) with the cytoplasm of Solanum anguivi. Plant Breed 130(2):256–260. https://doi.org/10.1111/j.1439-0523.2010.01788.x

    Article  CAS  Google Scholar 

  • Khan MMR, Isshiki S (2016) Cytoplasmic male sterility in eggplant. Horticult J 85(1):1–7. https://doi.org/10.2503/hortj.MI-IR03

    Article  CAS  Google Scholar 

  • Kharkongar HP, Khanna VK, Tyagi W, Rai M, Meetei NT (2013) Wide hybridization and embryo-rescue for crop improvement in Solanum. Agrotechnology (11). https://doi.org/10.4172/2168-9881.1000s11-004

  • Kirti PB, Rao BGS (1980) Chromosome pairing in reciprocal hybrids of Solanum integrifolium and Solanum indicum var. multiflora. Caryologia 33(2):289–294. https://doi.org/10.1080/00087114.1980.10796842

    Article  Google Scholar 

  • Kirti PB, Rao BGS (1981) Cytogenetic studies on the F1 hybrid Solanum indicum x Solanum torvum. Theor Appl Genet 59(5):303–306. https://doi.org/10.1007/bf00264982

    Article  CAS  PubMed  Google Scholar 

  • Kirti PB, Rao BGS (1982a) Chromosome relationships of spinous solanums. Proc Indian Acad Sci-Plant Sci 91(2):83–91

    Google Scholar 

  • Kirti PB, Rao BGS (1982b) Cytological studies on F1 hybrids of Solanum integrifolium with Solanum melongena and Solanum melongena var. insanum. Genetica 59(2):127–131. https://doi.org/10.1007/bf00133296

    Article  Google Scholar 

  • Kirti PB, Rao BGS (1983) The cytogenetic basis of sterility in spinous Solanum hybrids. Caryologia 36(2):155–164. https://doi.org/10.1080/00087114.1983.10797655

    Article  Google Scholar 

  • Kouassi A, Beli-Sika E, Tian-Bi TY-N, Alla-N’Nan O, Kouassi AB, N’Zi JC, N’Guetta AS-P, Tio-Toure B (2014) Identification of three distinct eggplant subgroups within the Solanum aethiopicum Gilo group from Côte d’Ivoire by morpho-agronomic characterization. Agriculture 4:260–273

    Article  Google Scholar 

  • Kouassi B, Prohens J, Gramazio P, Kouassi AB, Vilanova S, Galan-Avila A, Herraiz FJ, Kouassi A, Segui-Simarro JM, Plazas M (2016) Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Sci Hortic 213:199–207. https://doi.org/10.1016/j.scienta.2016.10.039

    Article  Google Scholar 

  • Kumar G, Meena BL, Kar R, Tiwari SK, Gangopadhyay KK, Bisht IS, Mahajan RK (2008) Morphological diversity in brinjal (Solanum melongena L.) germplasm accessions. Plant genetic resources: characterization and utilization 6(3):232–236. https://doi.org/10.1017/s1479262108994211

    Article  Google Scholar 

  • Kumchai J, Wei YC, Lee CY, Chen FC, Chin SW (2013) Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Gen Mol Res 12(1):755–764. https://doi.org/10.4238/2013.march.13.4

    Article  CAS  PubMed  Google Scholar 

  • Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101(1):154–165. https://doi.org/10.1094/phyto-02-10-0048

    Article  CAS  PubMed  Google Scholar 

  • Lebeau A, Gouy M, Daunay MC, Wicker E, Chiroleu F, Prior P, Frary A, Dintinger J (2013) Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor Appl Genet 126(1):143–158. https://doi.org/10.1007/s00122-012-1969-5

    Article  CAS  PubMed  Google Scholar 

  • Lester RN (1986) Taxonomy of scarlet eggplants, Solanum aethiopicum L. Acta Hortic 182:125–132

    Article  Google Scholar 

  • Lester RN (1989) Evolution under domestication involving disturbance of genic balance. Euphytica 44:125–132

    Article  Google Scholar 

  • Lester RN, Hasan SMZ (1991) Origin and domestication of the brinjal eggplant, Solanum melongena L., from S. incanum in Africa and Asia. In: Hawkes JG, Lester RN, Nee M, Estrada-R N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal botanic gardens, Kew, pp 369–387

    Google Scholar 

  • Lester RN, Kang JH (1998) Embryo and endosperm function and failure in Solanum species and hybrids. Ann Bot 82(4):445–453. https://doi.org/10.1006/anbo.1998.0695

    Article  Google Scholar 

  • Lester RN, Niakan L (1986) Origin and domestication of the scarlet eggplant, Solanum aethiopicum, from S. anguivi in Africa In: D’Arcy WG (ed) Solanaceae, biology and systematics. Columbia university press, pp 433–456

    Google Scholar 

  • Liu J, Zheng ZS, Zhou XH, Feng C, Zhuang Y (2015) Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica 201(3):463–469. https://doi.org/10.1007/s10681-014-1234-x

    Article  CAS  Google Scholar 

  • Liu KB, Li YM, Sink KC (1995) Asymmetric somatic hybrid plants between an interspecific Lycopersicon hybrid and Solanum melongena. Plant Cell Rep 14(10):652–656. https://doi.org/10.1007/bf00232732

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Yu Y, Cai XK, Tu W, Xie CH, Liu J (2016) Introgression of bacterial wilt resistance from Solanum melongena to S. tuberosum through asymmetric protoplast fusion. Plant Cell Tissue Organ Cult 125(3):433–443. https://doi.org/10.1007/s11240-016-0958-9

    Article  CAS  Google Scholar 

  • Malausa JC, Daunay MC, Bourgoin T (1988) Resistance of several varieties of eggplant, Solanum melongena L. to the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Homoptera, Aleyrodidae). Agronomie 8(8):693–699. https://doi.org/10.1051/agro:19880804

    Article  Google Scholar 

  • Mc Cammon KR, Honma S (1983) Morphological and cytogenetic analyses of an interspecific hybrid eggplant. Solanum melongena x Solanum torvum HortScience 18:894–895

    Google Scholar 

  • Mennella G, Rotino GL, Fibiani M, D’Alessandro A, Francese G, Toppino L, Cavallanti F, Acciarri N, Lo Scalzo R (2010) Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species. J Agric Food Chem 58(13):7597–7603. https://doi.org/10.1021/jf101004z

    Article  CAS  PubMed  Google Scholar 

  • Meyer RS, Whitaker BD, Little DP, Wu SB, Kennelly EJ, Long CL, Litt A (2015) Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry 115:194–206. https://doi.org/10.1016/j.phytochem.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Guinard J, Lonjon F, Sujeeun L, Barberis P, Genin S, Vailleau F, Daunay MC, Dintinger J, Poussier S, Peeters N, Wicker E (2018) The eggplant AG91-25 recognizes the Type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex). Mol Plant Pathol 19(11):2459–2472. https://doi.org/10.1111/mpp.12724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyle LC, Nakazato T (2010) Hybrid Incompatibility “snowballs” between Solanum species. Science 329(5998):1521–1523. https://doi.org/10.1126/science.1193063

    Article  CAS  PubMed  Google Scholar 

  • Mutlu N, Boyaci FH, Gocmen M, Abak K (2008) Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theor Appl Genet 117(8):1303–1312. https://doi.org/10.1007/s00122-008-0864-6

    Article  CAS  PubMed  Google Scholar 

  • Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK (2014) Genetic diversity, population structure, and resistance to phytophthora capsici of a worldwide collection of eggplant germplasm. Plos One 9(5). https://doi.org/10.1371/journal.pone.0095930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niakan L (1980) Biosystematics of the scarlet eggplant (L.) and related species. Ph.D., Birmingham (UK)

    Google Scholar 

  • Olet EA, Bukenya-Ziraba R (2001) Variation within the S. incanum complex in Uganda and its relationship with S. cerasiferum In: van den Berg RG, Barendse GWM, Van der Weerden G, Mariani C (eds) Solanaceae V, Advances in taxonomy and utilization. Nijmegen University press, pp 97–108

    Google Scholar 

  • Omidiji MO (1979) Crossability relationships between some species of Solanum, Lycopersicon and Capsicum cultivated in Nigeria. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic press for the Linnaean Society of London, pp 599–604

    Google Scholar 

  • Omidiji MO (1982) Interrelationships of Solanum species in different series of the sub-genus Leptostemonum (Dun.) Bitt. Crop Res (Hortic Res) 22:3–12

    Google Scholar 

  • Omidiji MO (1983) Cytomorphological studies of F1 hybrid Solanum aethiopicum x Solanum macrocarpon. Cytologia 48(1):35–40

    Article  Google Scholar 

  • Omidiji MO (1986) the role of hybridization in the evolution of species in Solanum subgenus Leptostemonum. In: D’Arcy WG (ed) Solanaceae, biology and systematics. Columbia University Press, pp 468–476

    Google Scholar 

  • Osei MK, Banful B, Osei CK, Oluoch MO (2010) Characterization of African eggplant for morphological characteristics. J Agric Sci Technol 4(3(serial n°28)):33–37

    Google Scholar 

  • Oyelana OA, Ogunwenmo KO (2009) Nuclear and non-nuclear interactions in F1 hybrids populations of three Solanum species in the subgenus Leptostemonum, section Melongena (Solanaceae). Turkish J Bot 33:243–255

    Google Scholar 

  • Oyelana OA, Ogunwenmo KO, Nwagburuka CC, Alabi OA (2009) Cytomorphological analysis of a novel hybrid from Solanum melongena ‘Golden’ x S. scabrum ‘Scabrum’ (Solanaceae). Span J Agric Res 7(2):355–363

    Article  Google Scholar 

  • Oyelana OA, Ugborogho RE (2008) Phenotypic variation of F-1 and F-2 populations from three species of Solanum L. (Solanaceae). Afr J Biotechnol 7(14):2359–2367

    Google Scholar 

  • Pearce K (1975) Solanum melongena L. and related species. Ph.D., Birmingham (UK)

    Google Scholar 

  • Plazas M, Andujar I, Vilanova S, Gramazio P, Herraiz FJ, Prohens J (2014) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00318

  • Plazas M, Lopez-Gresa MP, Vilanova S, Torres C, Hurtado M, Gramazio P, Andujar I, Herraiz FJ, Belles JM, Prohens J (2013) Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning. J Agric Food Chem 61(37):8871–8879. https://doi.org/10.1021/jf402429k

    Article  CAS  PubMed  Google Scholar 

  • Plazas M, Vilanova S, Gramazio P, Rodriguez-Burruezo A, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H, Kouassi B, Kouassi A, Prohens J (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. J Am Soc Hort Sci 141(1):34–44

    Article  Google Scholar 

  • Polignano G, Uggenti P, Bisignano V, Della Gatta C (2010) Genetic divergence analysis in eggplant (Solanum melongena L.) and allied species. Genet Resour Crop Evol 57(2):171–181. https://doi.org/10.1007/s10722-009-9459-6

    Article  Google Scholar 

  • Prabakaran S, Balakrishnan S, Ramesh Kumar S, Arumugam T, Anandakumar CR (2015) Genetic diversity, trait relationship and path analysis in eggplant landraces. Electron J Plant Breed 6(3):831–837

    Google Scholar 

  • Prabhu M, Natarajan S, Veeraragavathatham D, Pugalendhi L (2009) The biochemical basis of fruit and shoot borer resistance in interspecific progenies of brinjal (Solanum melongena L.). Eurasian J Biosci 3:50–57. https://doi.org/10.5053/ejobios.2009.3.0.7

    Article  CAS  Google Scholar 

  • Prohens J, Blanca JM, Nuez F (2005) Morphological and molecular variation in a collection of eggplants from a secondary center of diversity: Implications for conservation and breeding. J Am Soc Hort Sci 130(1):54–63

    Article  CAS  Google Scholar 

  • Prohens J, Plazas M, Raigon MD, Segui-Simarro JM, Stommel JR, Vilanova S (2012) Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica 186(2):517–538. https://doi.org/10.1007/s10681-012-0652-x

    Article  CAS  Google Scholar 

  • Prohens J, Whitaker BD, Plazas M, Vilanova S, Hurtado M, Blasco M, Gramazio P, Stommel JR (2013) Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum). Ann Appl Biol 162(2):242–257. https://doi.org/10.1111/aab.12017

    Article  CAS  Google Scholar 

  • Rajasekaran S (1970) Cytogenetic studies of F1 hybrid Solanum indicum L. x Solanum melongena L. and its amphidiploid. Euphytica 19(2):217–224. https://doi.org/10.1007/bf01902949

    Article  Google Scholar 

  • Rajasekaran S (1971) Cytological studies on F1 hybrid (Solanum xanthocarpum Schrad. and Wendl. x Solanum melongena L.) and its amphidiploid. Caryologia 24(3):261–267. https://doi.org/10.1080/00087114.1971.10796434

    Article  Google Scholar 

  • Ranil RHG, Prohens J, Aubriot X, Niran HML, Plazas M, Fonseka RM, Vilanova S, Fonseka HH, Gramazio P, Knapp S (2017) Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet Resour Crop Evol 64(7):1707–1722. https://doi.org/10.1007/s10722-016-0467-z

    Article  Google Scholar 

  • Rao NN (1979) The barriers to hybridization between Solanum melongena and some other species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic press for the Linnaean society of London, pp 605–614

    Google Scholar 

  • Rao SV, Rao BGS (1984) Studies on the crossability relationships of some spinous solanums. Theor Appl Genet 67(5):419–426

    Article  CAS  PubMed  Google Scholar 

  • Rattan P, Kumar S, Salgotra RK, Samnotra RK, Sharma F (2015) Development of interspecific F-1 hybrids (Solanum melongena x Solanum khasianum) in eggplant through embryo rescue technique. Plant Cell, Tissue Organ Cult 120(1):379–386. https://doi.org/10.1007/s11240-014-0591-4

    Article  Google Scholar 

  • Rizza F, Mennella G, Collonnier C, Sihachakr D, Kashyap V, Rajam MV, Prestera M, Rotino GL (2002) Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp melongenae. Plant Cell Rep 20(11):1022–1032. https://doi.org/10.1007/s00299-001-0429-5

    Article  CAS  Google Scholar 

  • Robinson RW, Shail JW, Gao Y (2001) Interspecific hybridization of eggplant for Verticillium wilt resistance and other useful traits. In: Van den Berg RG, Barendse GWM, Van der Weerden G, Mariani C (eds) Solanaceae V, advances in taxonomy and utilization. Nijmegen University Press, pp 279–291

    Google Scholar 

  • Roth M, Florez-Rueda AM, Griesser S, Paris M, Stadler T (2018a) Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. Ann Bot 121(1):107–118. https://doi.org/10.1093/aob/mcx133

    Article  PubMed  Google Scholar 

  • Roth M, Florez-Rueda AM, Paris M, Stadler T (2018b) Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. Plant J 95(6):1084–1101. https://doi.org/10.1111/tpj.14012

    Article  CAS  PubMed  Google Scholar 

  • Roth M, Florez-Rueda AM, Stadler T (2018c) Differences in effective ploidy as drivers of genome-wide endosperm expression asymmetries and seed failure in wild tomato hybrids. doi:bioRxiv, 459925

    Google Scholar 

  • Rotino GL, Sihachakr D, Rizza F, Vale G, Tacconi MG, Alberti P, Mennella G, Sabatini E, Toppino L, D’Alessandro A, Acciarri N (2005) Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiologiae Plant 27(4B):723–733. https://doi.org/10.1007/s11738-005-0077-4

    Article  CAS  Google Scholar 

  • Sadder MT, Al-Shareef RM, Hamdan H (2006) Assessment of genetic, morphological, and agronomical diversity among Jordanian eggplant (Solanum melongena L.) landraces using random amplified polymorphic DNA (RAPD). In: Spooner DM, Bohs L, Giovannoni J, Olmstead RG, Shibata D (eds) Solanaceae VI: Genomics meets biodiversity, vol 745. Acta Horticulturae, pp 303–310

    Google Scholar 

  • Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U (2014) Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp syzygii subsp nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp indonesiensis subsp nov., banana blood disease bacterium strains as Ralstonia syzygii subsp celebesensis subsp nov and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp nov. Int J Syst Evol Microbiol 64:3087–3103. https://doi.org/10.1099/ijs.0.066712-0

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Matsunaga H, Saito A, Hamato N, Koga T, Suzuki T, Yoshida T (2009) A novel source of cytoplasmic male sterility and a fertility restoration gene in eggplant (Solanum melongena L.) lines. J Jpn Soc Hortic Sci 78(4):425–430. https://doi.org/10.2503/jjshs1.78.425

    Article  Google Scholar 

  • Salgon S, Jourda C, Sauvage C, Daunay MC, Reynaud B, Wicker E, Dintinger J (2017) Eggplant resistance to the ralstonia solanacearum species complex involves both broad-spectrum and strain-specific quantitative trait loci. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00828

  • Salgon S, Raynal M, Lebon S, Baptiste JM, Daunay MC, Dintinger J, Jourda C (2018) Genotyping by sequencing highlights a polygenic resistance to Ralstonia pseudosolanacearum in eggplant (Solanum melongena L.). Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020357

    Article  PubMed Central  CAS  Google Scholar 

  • Samoylov VM, Sink KC (1996) The role of irradiation dose and DNA content of somatic hybrid calli in producing asymmetric plants between an interspecific tomato hybrid and eggplant. Theor Appl Genet 92(7):850–857. https://doi.org/10.1007/bf00221897

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Mata MC, Yokoyama WE, Hong YJ, Prohens J (2010) Alpha-Solasonine and alpha-Solamargine contents of Gboma (Solanum macrocarpon L.) and Scarlet (Solanum aethiopicum L.) Eggplants. J Agric Food Chem 58(9):5502–5508. https://doi.org/10.1021/jf100709g

    Article  PubMed  CAS  Google Scholar 

  • Scaldaferro M, Chiarini F, Santinaque FF, Bernardello G, Moscone EA (2012) Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genet Resour Crop Evol 59(8):1833–1847. https://doi.org/10.1007/s10722-012-9807-9

    Article  Google Scholar 

  • Schaff DA, Jelenkovic G, Boyer CD, Pollack BL (1982) Hybridization and fertility of hybrid derivatives of Solanum melongena L. and S. macrocarpon L. Theor Appl Genet 62(2):149–153. https://doi.org/10.1007/bf00293348

    Article  CAS  PubMed  Google Scholar 

  • Seck A (1997) Recherche et étude génétique de la résistance de l’aubergine africaine (S. aethiopicum L., spp. Kumba) aux acariens phytophages. RADHORT (FAO). Bulletin de liaison 11:46–53

    Google Scholar 

  • Sharma DR, Chowdhury JB, Ahuja U, Dhankhar BS (1980) Interspecific hybridization in genus Solanum. A cross between S. melongena and S. khasianum through embryo culture Zeitschrift für Pflanzenzüchtung 85:248–253

    Google Scholar 

  • Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants—a review. Euphytica 89(3):325–337

    Google Scholar 

  • Sihachakr D, Daunay MC, Serraf I, Chaput MH, Mussio I, Haicour R, Rossignol L, Ducreux G (1994) Somatic hybridization of eggplant (Solanum melongena L.) with its close and wild relatives. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, somatic hybridization in crop improvement, vol I. Springer, Heidelberg, pp 255–278

    Chapter  Google Scholar 

  • Sihachakr D, Haicour R, Chaput MH, Barrientos E, Ducreux G, Rossignol L (1989) Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theor Appl Genet 77(1):1–6. https://doi.org/10.1007/bf00292307

    Article  CAS  PubMed  Google Scholar 

  • Sihachakr D, Haicour R, Serraf I, Barrientos E, Herbreteau C, Ducreux G, Rossignol L, Souvannavong V (1988) Electrofusion for the production of somatic hybrid plants of Solanum melongena L. and Solanum khasianum Clark, C.B. Plant Sci 57(3):215–223. https://doi.org/10.1016/0168-9452(88)90127-6

    Article  Google Scholar 

  • Stattmann M, Gerick E, Wenzel G (1994) Interspecific somatic hybrids between Solanum khasianum and S. aculeatissimum produced by electrofusion. Plant Cell Rep 13(3–4):193–196

    Google Scholar 

  • Stern S, Agra MD, Bohs L (2011) Molecular delimitation of clades within New World species of the “spiny solanums” (Solanum subg. Leptostemonum). Taxon 60(5):1429–1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Stommel JR, Whitaker BD (2003) Phenolic acid content and composition of eggplant fruit in a germplasm core subset. J Am Soc Hortic Sci 128(5):704–710

    Article  CAS  Google Scholar 

  • Sunseri F, Polignano GB, Alba V, Lotti C, Bisignano V, Mennella G, Alessandro AD, Bacchi M, Riccardi P, Fiore MC, Ricciardi L (2010) Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci 4(7):231–241

    CAS  Google Scholar 

  • Taher D, Solberg SO, Prohens J, Chou YY, Rakha M, Wu TH (2017) World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01484

  • Tamura N, Murata Y, Mukaihara T (2002) A somatic hybrid between Solanum integrifolium and Solanum violaceum that is resistant to bacterial wilt caused by Ralstonia solanacearum. Plant Cell Rep 21(4):353–358. https://doi.org/10.1007/s00299-002-0524-2

    Article  CAS  Google Scholar 

  • Toki S, Kameya T, Abe T (1990) Production of a triple mutant, chlorophyll deficient, streptomycin resistant, and kanamycin resistant Nicotiana tabacum, and its use in intergeneric somatic hybrid formation with Solanum melongena. Theor Appl Genet 80(5):588–592

    Article  CAS  PubMed  Google Scholar 

  • Toppino L, Mennella G, Rizza F, D’Alessandro A, Sihachakr D, Rotino GL (2008a) ISSR and isozyme characterization of androgenetic dihaploids reveals tetrasomic inheritance in tetraploid somatic hybrids between Solanum melongena and Solanum aethiopicum group Gilo. J Hered 99(3):304–315. https://doi.org/10.1093/jhered/esm122

    Article  CAS  PubMed  Google Scholar 

  • Toppino L, Vale G, Rotino GL (2008b) Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S-melongena) and development of associated PCR-based markers. Mol Breed 22(2):237–250. https://doi.org/10.1007/s11032-008-9170-x

    Article  CAS  Google Scholar 

  • Tümbilen Y, Frary A, Daunay MC, Doganlar S (2011a) Application of EST-SSRs to examine genetic diversity in eggplant and its close relatives. Turk J Biol 35(2):125–136. https://doi.org/10.3906/biy-0906-57

    Article  CAS  Google Scholar 

  • Tümbilen Y, Frary A, Mutlu S, Doganlar S (2011b) Genetic diversity in Turkish eggplant (Solanum melongena) varieties as determined by morphological and molecular analyses. Int Res J Biotechnol 2(1):16–25

    Google Scholar 

  • Vilanova S, Manzur JP, Prohens J (2012) Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed 30(2):647–660. https://doi.org/10.1007/s11032-011-9650-2

    Article  CAS  Google Scholar 

  • Villeneuve F, Latour F, Théry T, Erard P, Fournier C, Daunay MC (2016) Screening of solanaceous wild relatives for graft affinity with eggplant (Solanum melongena L.). In: Ertsey-Peregi K, Füstös Z, Palotas G, Csillery G (eds) Proceedings of the XVIth Eucarpia meeting on Capsicum and eggplant (12–14 Sept 2016) Kekckemet, Hungary, pp 152–160

    Google Scholar 

  • Villeneuve F, Latour F, Théry T, Steinberg C, V. E-H, Pitrat M, Daunay MC (2014) The control of soil borne vascular diseases: limits of genetic resistance of cultivars and rootstocks for controlling Fusarium oxysporum f.sp. melonis (Melon) and Verticillium dahliae (eggplant). In: disinfestation PVisocan-csas (ed) Acta Horticulturae 1044. ISHS, pp 57–65

    Google Scholar 

  • Vorontsova MS, Knapp S (eds) (2016) A revision of the “spiny solanums”, Solanum subgenus Leptostemonum (Solanaceae), in Africa and Madagascar, vol 99. Systematic botany monographs. The American Society of Plant Taxonomists

    Google Scholar 

  • Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173(2):176–193. https://doi.org/10.1111/boj.12053

    Article  Google Scholar 

  • Wanjari KB (1976) Cytogenetic studies on F1 hybrids between Solanum melongena L. and Solanum macrocarpon L. Hortic Res 15(2):77–83

    Google Scholar 

  • Wu SB, Meyer RS, Whitaker BD, Litt A, Kennelly EJ (2013) A new liquid chromatography-mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. J Chromatogr 1314:154–172. https://doi.org/10.1016/j.chroma.2013.09.017

    Article  CAS  Google Scholar 

  • Xiao XO, Cao BH, Li GN, Lei JJ, Chen QH, Jiang J, Cheng YJ (2015) Functional characterization of a putative bacterial wilt resistance gene (RE-bw) in eggplant. Plant Mol Biol Rep 33(4):1058–1073. https://doi.org/10.1007/s11105-014-0814-1

    Article  CAS  Google Scholar 

  • Yoshimi M, Kitamura Y, Isshiki S, Saito T, Yasumoto K, Terachi T, Yamagishi H (2013) Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongena). Theor Appl Genet 126(7):1851–1859. https://doi.org/10.1007/s00122-013-2097-6

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ye WX, He L, Cai XK, Liu T, Liu J (2013) Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Rep 32(11):1687–1701. https://doi.org/10.1007/s00299-013-1480-8

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Bao SY, Liu J, Yang Y, Zhuang Y (2018) Production and characterization of an amphidiploid derived from interspecific hybridization between Solanum melongena L. and Solanum aculeatissimum Jacq. Sci Hortic 230:102–106. https://doi.org/10.1016/j.scienta.2017.11.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Daunay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daunay, MC., Salinier, J., Aubriot, X. (2019). Crossability and Diversity of Eggplants and Their Wild Relatives. In: Chapman, M. (eds) The Eggplant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-99208-2_11

Download citation

Publish with us

Policies and ethics