Skip to main content

Bivalve Chemosymbioses on Mudflats

  • Chapter
  • First Online:
Mudflat Ecology

Part of the book series: Aquatic Ecology Series ((AQEC,volume 7))

Abstract

Mudflat sediments are typically enriched in reduced sulfur compounds, which can fuel bacterial chemoautotrophic production. Symbiotic associations between marine bivalves and chemolithoautotrophic, sulfur-oxidizing bacteria are common in sulfur-rich marine habitats, and the presence of infaunal chemosymbiotic bivalves in mudflats is reviewed herein. Chemosymbiotic bivalves from the families Lucinidae, Solemyidae and Thyasiridae have been reported to inhabit intertidal sediments, especially within, or near seagrass beds or mangroves; of the three families, the Lucinidae can be particularly abundant. Chemosymbiotic bivalves can alter chemical conditions in sediments, influence carbon and sulfur cycles, and provide a food source to invertebrates, birds and humans. In general, chemosymbiotic bivalves are uncommon in mudflats, despite the abundance of reduced sulfur, and reasons for their relative paucity in intertidal sediments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JA (1953) Function of the foot in the Lucinacea (Eulamelibranchia). Nature 171:1117–1118

    Article  CAS  PubMed  Google Scholar 

  • Allen JA (1958) On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philos Trans R Soc Lond B 241:421–484

    Article  Google Scholar 

  • Ball AD, Purdy KJ, Glover EA, Taylor JD (2009) Ctenidial structure and three bacterial symbiont morphotypes in Anodontia (Euanodontia) ovum (Reeve, 1850) from the Great Barrier Reef, Australia (Bivalvia: Lucinidae). J Mollusc Stud 75:175–185

    Article  Google Scholar 

  • Barnes PAG, Hickman CS (1999) Lucinid bivalves and marine angiosperms: a search for causal relationships. In: Walker DI, Wells FE (eds) The seagrass flora and fauna of Rottnest Island. Western Australian Museum, Perth, Western Australia, pp 215–238

    Google Scholar 

  • Berg CJ Jr, Alatalo P (1984) Potential of chemosynthesis in molluscan mariculture. Aquaculture 39:165–179

    Article  CAS  Google Scholar 

  • Brissac T, Merçot H, Gros O (2011) Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines). FEMS Microbiol Ecol 75:63–76

    Article  CAS  PubMed  Google Scholar 

  • Cammen LM (1991) Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat. Mar Ecol Prog Ser 71:13–25

    Article  Google Scholar 

  • Cavanaugh CM (1985) Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol Soc Wash Bull 6:373–388

    Google Scholar 

  • Christo SW, Ivachuk CS, Ferreira-Júnior AL, Absher TM (2016) Reproductive periods of Lucina pectinata (Bivalve; Lucinidae) in the Paranaguá Estuarine Complex, Paraná – Brazil. Braz J Biol 76:300–306

    Article  CAS  PubMed  Google Scholar 

  • Conway N, McDowell Capuzzo J, Fry B (1989) The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from a stable isotope analysis of endosymbionts and host. Limnol Oceanogr 34:249–255

    Article  CAS  Google Scholar 

  • Cook PLM, Revill AT, Clementson LA, Volkman JK (2004) Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. III. Sources of organic matter. Mar Ecol Prog Ser 280:55–72

    Article  CAS  Google Scholar 

  • Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929

    Article  CAS  Google Scholar 

  • Dando PR, Spiro B (1993) Varying nutritional dependence of the thyasirid bivalves Thyasira sarsia and T. equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Mar Ecol Prog Ser 92:151–158

    Article  CAS  Google Scholar 

  • Dando PR, Southward AJ, Southward EC, Terwilliger NB, Terwilliger RC (1985) Sulphur-oxidizing bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar Ecol Prog Ser 23:85–98

    Article  CAS  Google Scholar 

  • Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc R Soc Lond Ser B 227:227–247

    Article  CAS  Google Scholar 

  • Dando PR, Ridgway SA, Spiro B (1994) Sulphide ‘mining’ by lucinid bivalve molluscs: demonstrated by stable sulphur isotope measurements and experimental models. Mar Ecol Prog Ser 107:169–175

    Article  CAS  Google Scholar 

  • Dando PR, Southward AJ, Southward EC (2004) Rates of sediment sulphide oxidation by the bivalve mollusc Thyasira sarsi. Mar Ecol Prog Ser 280:181–187

    Article  CAS  Google Scholar 

  • Dashtgard SE, Gingras MK, Pemberton SG (2008) Grain-size controls on the occurrence of bioturbation. Palaeogeogr Palaeoclimatol Palaeoecol 257:224–243

    Article  Google Scholar 

  • Dauwe B, Herman PMJ, Heip CHR (1998) Community structure and bioturbation potential of macrofauna at found North Sea stations with contrasting food supply. Mar Ecol Prog Ser 173:67–83

    Article  Google Scholar 

  • de Fouw J, Govers LL, van de Koppel J, van Belzen J, Dorigo W, Cheikh MAS, Christianen MJA, van der Reijden KJ, van der Geest M, Piersma T, Smolders AJP, Olff H, Lamers LPM, van Gils JA, van der Heide T (2016) Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Curr Biol 26:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86

    Article  Google Scholar 

  • Drew GA (1900) Locomotion in Solenomya and its relatives. Anat Anz 17:257–266

    Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Article  CAS  PubMed  Google Scholar 

  • Dufour SC (2005) Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biol Bull 208:200–212

    Article  PubMed  Google Scholar 

  • Dufour SC, Felbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426:65–67

    Article  CAS  PubMed  Google Scholar 

  • Dufour SC, Laurich JR, Batstone RT, McCuaig B, Elliott A, Poduska KM (2014) Magnetosome-containing bacteria living as symbionts of bivalves. ISME J 8:2453–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duperron S, Gaudron SM, Rodrigues CF, Cunha MR, Decker C, Olu K (2013) An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea. Biogeosciences 10:3241–3267

    Article  Google Scholar 

  • Fenchel T, Reidl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:59–68

    Article  Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–613

    CAS  Google Scholar 

  • Frenkiel L, Gros O, Mouëza M (1995) Gill structure in Lucina pectinata (Bivalvia: Lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur-oxidizing bacteria. Mar Biol 125:511–524

    Google Scholar 

  • Frey RW (1968) The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. I. Pelecypod burrows. J Paleontol 42:570–574

    Google Scholar 

  • Glover EA, Taylor JD (2001) Systematic revision of Australian and Indo-Pacific Lucinidae (Mollusca: Bivalvia): Pillucina, Wallucina and descriptions of two new genera and four new species. Rec Aust Mus 53:263–292

    Article  Google Scholar 

  • Glover EA, Taylor JD (2007) Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae of New Caledonia and Lifou (Mollusca, Bivalvia). Zoosystema 29:109–181

    Google Scholar 

  • Glover EA, Taylor JD, Williams ST (2008) Mangrove-associated lucinid bivalves of the central Indo-West Pacific: review of the “Austriella” group with a new genus and species (Mollusca: Bivalvia: Lucinidae). Raffles Bull Zool Suppl 18:25–40

    Google Scholar 

  • Gros O, Frenkiel L, Mouëza M (1996) Gill ultrastructure and symbiotic bacteria in the tropical lucinid, Linga pensylvanica (Linné). Symbiosis 20:259–280

    Google Scholar 

  • Gros O, Frenkiel L, Mouëza M (1997) Embryonic, larval, and post-larval development in the symbiotic clam, Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol 116:86–101

    Article  Google Scholar 

  • Gros O, Duplessis MR, Felbeck H (1999) Embryonic development and endosymbiont transmission mode in the symbiotic clam Lucinoma aequizonata (Bivalvia: Lucinidae). Invertebr Reprod Dev 36:93–103

    Article  Google Scholar 

  • Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N (2012) Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol 14:1584–1595

    Article  CAS  PubMed  Google Scholar 

  • Gustafson RG, Lutz RA (1992) Larval and early post-larval development of the protobranch bivalve Solemya velum (Mollusca: Bivalvia). J Mar Biol Assoc U K 72:383–402

    Article  Google Scholar 

  • Hakonen A, Hulth S, Dufour S (2010) Analytical performance during ratiometric long-term imaging of pH in bioturbated sediments. Talanta 81:1393–1401

    Article  CAS  PubMed  Google Scholar 

  • Healy JM, Mikkelsen PM, Giribet G, Bieler R (2017) Sperm ultrastructure of the Protobranchia: comparison with other bivalve mollusks and potential taxonomic and phylogenetic significance. Fieldiana Life Earth Sci 11:1–28

    Article  Google Scholar 

  • Herry A, Le Pennec M (1987) Endosymbiotic bacteria in the gills of the littoral bivalve molluscs Thyasira flexuosa (Thyasiridae) and Lucinella divaricata (Lucinidae). Symbiosis 4:25–36

    Google Scholar 

  • Herry A, Diouris M, Le Pennec M (1989) Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101:305–312

    Article  Google Scholar 

  • Higgs ND, Newton H, Attrill MJ (2016) Caribbean spiny lobster fishery is underpinned by trophic subsidies from chemosynthetic primary production. Curr Biol 26:3393–3398

    Article  CAS  PubMed  Google Scholar 

  • Howarth RW (1984) The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27

    Article  CAS  Google Scholar 

  • Jackson JBC (1972) The ecology of molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Mar Biol 14:304–337

    Article  Google Scholar 

  • Jackson JBC (1973) The ecology of molluscs of Thalassia communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bull Mar Sci 23:313–350

    Google Scholar 

  • Johnson MA, Fernandez C, Pergent G (2002) The ecological importance of an invertebrate chemoautotrophic symbiosis to phanerogam seagrass beds. Bull Mar Sci 71:1343–1351

    Google Scholar 

  • Kauffmann EG (1967) Cretaceous Thyasira from the Western Interior of North America. Smithson Misc Collect 152:1–159

    Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24

    Article  CAS  Google Scholar 

  • Krueger DM, Gallagher SM, Cavanaugh CM (1992) Suspension feeding on phytoplankton by Solemya velum, a symbiont-containing clam. Mar Ecol Prog Ser 86:145–151

    Article  Google Scholar 

  • Krueger DM, Gustafson RG, Cavanaugh CM (1996) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull 190:195–202

    Article  CAS  PubMed  Google Scholar 

  • Le Pennec M, Beninger PG (2000) Reproductive characteristics and strategies of reducing-system bivalves. Comp Biochem Physiol A 126:1–16

    Article  Google Scholar 

  • Le Pennec M, Beninger PG, Herry A (1995a) Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp Biochem Physiol 111A:183–189

    Article  Google Scholar 

  • Le Pennec M, Herry A, Johnson M, Beninger PG (1995b) Nutrition-gametogenesis relationship in the endosymbiont host bivalve Loripes lucinalis (Lucinidae) from reducing coastal habitats. In: Eleftheriou A, Ansell AD, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen and Olsen, Fredensborg, pp 139–142

    Google Scholar 

  • Lebata MJHL (2000) Elemental sulfur in the gills of the mangrove mud clam Anodontia edentula (Family Lucinidae). J Shellfish Res 19:241–245

    Google Scholar 

  • Lebata MJHL (2001) Oxygen, sulphide and nutrient uptake of the mangrove mud clam Anodontia edentulata (Family: Lucinidae). Mar Pollut Bull 42:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Marbà N, Duarte CM, Terrados J, Halun Z, Gacia E, Fortes MD (2010) Effects of seagrass rhizospheres on sediment redox conditions in SE Asian coastal ecosystems. Mar Ecol Prog Ser 33:107–117

    Google Scholar 

  • McCuaig B, Liboiron F, Dufour SC (2017) The bivalve Thyasira cf. gouldi hosts chemoautotrophic symbiont populations with strain level diversity. PeerJ 5:e3597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer E, Nilkerd B, Glover EA, Taylor JD (2008) Ecological importance of chemoautotrophic lucinid bivalves in a peri-mangrove community in eastern Thailand. Raffles Bull Zool 18:41–55

    Google Scholar 

  • Morse ES (1913) Observations on living Solenomya. Biol Bull 25:261–281

    Article  Google Scholar 

  • Ockelmann WK (1958) The zoology of East Greenland: marine lamellibranchiata. Medd Grønland 122:1–256

    Google Scholar 

  • Oliver PG (1986) A new lucinid bivalve from the Niger Delta and an appraisal of the Loripes group (Bivalvia, Lucinacea). Basteria 50:47–64

    Google Scholar 

  • Owen G (1961) A note on the habits and nutrition of Solemya parkinsoni (Protobranchia: Bivalvia). Q J Microsc Sci 102:15–21

    Google Scholar 

  • Papaspyrou S, Gregersen T, Kristensen E, Christensen B, Cox RP (2006) Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens). Mar Biol 148:541–550

    Article  CAS  Google Scholar 

  • Payne CM, Allen JA (1991) The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean. Philos Trans R Soc Lond B 334:481–562

    Article  Google Scholar 

  • Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, Bulgheresi S, Mussmann M, Herbold C, Seah BKB, Antony CP, Liu D, Belitz A, Weber M (2016) Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol 2:16195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primavera JH, Lebata MJHL, Gustilo LF, Altamirano JP (2002) Collection of the clam Anodontia edentula in mangrove habitats in Panay and Guimaras, central Philippines. Wetl Ecol Manag 10:363–370

    Article  Google Scholar 

  • Queirós AM, Birchenough SNR, Bremner J, Godbold JA, Parker RE, Romero-Ramirez A, Reiss H, Solan M, Somerfield PJ, Van Colen C, Van Hoey G, Widdicombe S (2013) A bioturbation classification of European marine infaunal invertebrates. Ecol Evol 3:3958–3985

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainer SF, Wadley VA (1991) Abundance, growth and production of the bivalve Solemya sp, a food source for juvenile rock lobsters in a seagrass community in western Australia. J Exp Mar Biol Ecol 152:201–223

    Article  Google Scholar 

  • Rattanachot E, Prathep A (2015) Species-specific effects of seagrass on belowground biomass, redox potential and Pillucina vietnamica (Lucinidae). J Mar Biol Assoc U K 95:1693–1704

    Article  Google Scholar 

  • Reid RGB (1980) Aspects of the biology of a gutless species of Solemya (Bivalvia: Protobranchia). Can J Zool 58:386–393

    Article  Google Scholar 

  • Reid RGB, Bernard FR (1980) Gutless bivalves. Science 208:609–610

    Article  CAS  PubMed  Google Scholar 

  • Reid RGB, Brand DG (1987) Observations of Australian Solemyidae. J Malacol Soc Aust 8:41–50

    Google Scholar 

  • Reynolds LK, Berg P, Zieman JC (2007) Lucinid clam influence on the biogeochemistry of the seagrass Thalassia testudinum sediments. Estuar Coasts 30:482–490

    Article  CAS  Google Scholar 

  • Roeselers G, Newton ILG (2012) On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol 94:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rondinelli SF, Barros F (2010) Evaluating shellfish gathering (Lucina pectinata) in a tropical mangrove system. J Sea Res 64:401–407

    Article  Google Scholar 

  • Rosenberg R, Davey E, Gunnarsson J, Norling K, Frank M (2007) Application of computer-aided tomography to visualize and quantify biogenic structures in marine sediments. Mar Ecol Prog Ser 331:23–34

    Article  Google Scholar 

  • Russell SL, Cavanaugh CM (2017) Intra-host genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol Biol Evol msx188

    Google Scholar 

  • Russell SL, Corbett-Detig RB, Cavanaugh CM (2017) Mixed transmission modes and dynamic genome evolution in an obligate animal-bacterial symbiosis. ISME J 11:1359–1371

    Article  PubMed  PubMed Central  Google Scholar 

  • Salas C, Woodside J (2002) Lucinoma kazani n. sp. (Mollusca: Bivalvia): Evidence of a living benthic community associated with a cold seep in the eastern Mediterranean Sea. Deep-Sea Res I Oceanogr Res Pap 49:991–1005

    Article  Google Scholar 

  • Scott KM (2005) Allometry of gill weights, gill surface areas, and foot biomass ∂13C values of the chemoautotroph-bivalve symbiosis Solemya velum. Mar Biol 147:935–941

    Article  Google Scholar 

  • Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J Mar Biol Assoc U K 66:889–914

    Article  Google Scholar 

  • Spiro B, Greenwood PB, Southward AJ, Dando PR (1986) 13C/12C ratios in marine invertebrates from reducing sediments: confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar Ecol Prog Ser 28:233–240

    Article  CAS  Google Scholar 

  • Stanley SM (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). Geol Soc Am Mem 125:296 pp

    Google Scholar 

  • Stanley SM (2014) Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves. Geology 42:803–806

    Article  Google Scholar 

  • Stewart FJ, Cavanaugh CM (2006) Bacterial endosymbiosis in Solemya (Mollusca: Bivalvia) – model systems for studies of symbiont-host adaptation. Antonie Van Leeuwenhoek 90:343–360

    Article  PubMed  Google Scholar 

  • Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosymbiotic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448

    Article  CAS  PubMed  Google Scholar 

  • Sundbäck K, Miles A, Göransson E (2000) Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Mar Ecol Prog Ser 200:59–76

    Article  Google Scholar 

  • Taylor JD, Glover EA (2000) Functional anatomy, chemosymbiosis and evolution of the Lucinidae. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the bivalvia. Geological Society, London, Special Publications 177, pp 207–225

    Google Scholar 

  • Taylor JD, Glover EA (2005) Cryptic diversity of chemosymbiotic bivalves: a systematic revision of worldwide Anodontia (Mollusca: Bivalvia: Lucinidae). Syst Biodivers 3:281–338

    Article  Google Scholar 

  • Taylor JD, Glover EA (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbiotic molluscs. Zool J Linnean Soc 148:421–438

    Article  Google Scholar 

  • Taylor JD, Williams ST, Glover EA (2007) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assoc UK 87:565–574

    Article  Google Scholar 

  • Taylor JD, Glover EA, Smith L, Williams ST (2014) Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc 111:401–420

    Article  Google Scholar 

  • van der Geest M, Sall AA, Ely SO, Nauta RW, van Gils JA, Piersma T (2014) Nutritional and reproductive strategies in a chemosymbiotic bivalve living in a tropical intertidal seagrass bed. Mar Ecol Prog Ser 501:113–126

    Article  Google Scholar 

  • van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP, van Gils JA (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434

    Article  PubMed  CAS  Google Scholar 

  • van Gils JA, van der Geest M, Jansen EJ, Govers LL, de Fouw J, Piersma T (2012) Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey. Ecology 93:1143–1152

    Article  PubMed  Google Scholar 

  • van Gils JA, van der Geest M, Leyrer J, Oudman T, Lok T, Onrust J, de Fouw J, van der Heide T, van den Hout PJ, Spaans B, Dekinga A, Brugge M, Piersma T (2013) Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proc R Soc B 280:20130861

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasquez-Cardenas D, Quintana CO, Meysman FJR, Kristensen E, Boschker HTS (2016) Species-specific effects of two bioturbating polychaetes on sediment chemoautotrophic bacteria. Mar Ecol Prog Ser 549:55–68

    Article  CAS  Google Scholar 

  • von Cosel R (2006) Taxonomy of West African bivalves VIII. Remarks on Lucinidae, with descriptions of five new genera and nine new species. Zoosystema 28:805–851

    Google Scholar 

  • Williams AB, Porter HJ (1971) A ten-year study of meroplankton in North Carolina estuaries: occurrence of postmetamorphal bivalves. Chesap Sci 12:26–32

    Article  Google Scholar 

  • Yonge CM (1939) The protobranchiate Mollusca; a functional interpretation of their structure and evolution. Philos Trans R Soc Lond Ser B Biol Sci 230:79–148

    Google Scholar 

  • Zabbey N, Hart AI, Wolff WJ (2010) Population structure, biomass and production of the West African lucinid Keletistes rhizoecus (Bivalvia, Mollusca) in Sivibilagbara swamp at Bodo Creek, Niger Delta, Nigeria. Hydrobiologia 654:193–203

    Article  Google Scholar 

  • Zanzerl H, Dufour SC (2017) The burrowing behaviour of symbiotic and asymbiotic thyasirid bivalves. J Conchol 42:299–308

    Google Scholar 

  • Zardus JD (2002) Protobranch bivalves. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, vol 42. Academic, London, pp 1–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne C. Dufour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dufour, S.C. (2018). Bivalve Chemosymbioses on Mudflats. In: Beninger, P. (eds) Mudflat Ecology. Aquatic Ecology Series, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-99194-8_7

Download citation

Publish with us

Policies and ethics