The Multiplicity Function

  • Kathy D. Merrill
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Since every orthonormal wavelet, and every semiorthogonal Parseval wavelet, has an associated GMRA, each also has an associated multiplicity function. In this chapter, we explore the use of the multiplicity function as a tool to analyze and build wavelets, and see how it is related to classical tools such as the dimension function.


  1. 1.
    Auscher, P.: Solution of two problems on wavelets. J. Geom. Anal. 5 181–236 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baggett, L.: An abstract interpretation of the wavelet dimension function using group representations. J. Funct. Anal. 173, 1–20 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baggett, L., Merrill, K.: Abstract harmonic analysis and wavelets in \(\mathbb R^n\). Contemp. Math. 247, 17–27 (1999)Google Scholar
  4. 4.
    Baggett, L., Medina, H., Merrill, K.: Generalized multiresolution analyses and a construction procedure for all wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 5, 563–573 (1999)Google Scholar
  5. 5.
    Bownik, M.: On characterizations of multiwavelets in \(L^2(\mathbb R^n)\). Proc. Am. Math. Soc. 129, 3265–3274 (2001)Google Scholar
  6. 6.
    Bownik, M., Rzeszotnik, Z.: The spectral function of shift-invariant spaces. Mich. Math. J. 51, 387–414 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bownik, M., Rzeszotnik, Z., Speegle, D.: A characterization of dimension functions of wavelets. Appl. Comput. Harmon. Anal. 10, 71–92 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calogero, A.: A characterization of wavelets on general lattices. J. Geom. Anal. 10, 597–622 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dai, X., Larson, D.: Wandering vectors for unitary systems and orthogonal wavelets. Memoirs Amer. Math. Soc. 134 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dai, X., Larson, D., Speegle, D.: Wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 3, 451–456 (1997)Google Scholar
  11. 11.
    Dai, X., Larson, D., Speegle, D.: Wavelet sets in \(\mathbb R^n\) II. Contemp. Math. 216, 15–40 (1998)Google Scholar
  12. 12.
    Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)CrossRefGoogle Scholar
  13. 13.
    Dixmier, J.: Von Neumann Algebras. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  14. 14.
    Gripenberg, G.: A necessary and sufficient condition for the existence of a father wavelet. Stud. Math. 114, 207–226 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gu, Q., Han, D.: On Multiresolution Analysis Wavelets in \(\mathbb R^n\). J. Fourier Anal. Appl. 6, 437–447 (2000)Google Scholar
  16. 16.
    Hernandez, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  17. 17.
    Lemarié-Rieusset, P.G.: Sur l’existence des analyses multi-résolutions en théorie des ondelettes. Rev. Mat. Iberoamericana 8, 457–474 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Paluszyński, M., Šikić, H., Weiss, G., Xiao, S.: Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv. Comput. Math. 18, 297–327 (2003)zbMATHGoogle Scholar
  19. 19.
    Ron, A., Shen, Z.: The wavelet dimension function is the trace function of a shift-invariant system. Proc. Am. Math. Soc. 131, 1385–1398 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rzeszotnik, Z.: Characterization theorems in the theory of wavelets. Ph.D. thesis, Washington University, St. Louis (2000)Google Scholar
  21. 21.
    Weber, E.: Applications of the wavelet multiplicity function. Contemp. Math. 247, 297–306 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kathy D. Merrill
    • 1
  1. 1.Department of MathematicsThe Colorado CollegeColorado SpringsUSA

Personalised recommendations