The Invariance of the Core Subspace

  • Kathy D. Merrill
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


The invariance of the core subspace V0 of a GMRA under the group Γ of unitary operators implies the existence of a unitary representation of Γ on V0, thus enabling the use of tools from abstract harmonic analysis. Because of the required condition δ−1Γδ ⊂ Γ, the invariance of V0 also gives invariance of Vj for j > 0, and thus representations of Γ there as well. The invariance of V1 in turn implies the invariance of W0 = V1 ∖ V0, where the representation of Γ is useful in proving the existence of orthonormal or Parseval wavelets. In this chapter we explore results that follow from analyzing these representations of Γ.


  1. 1.
    Baggett, L.: Non-Lebesgue multiresolution analyses. Colloq. Math. 118, 133–145 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baggett, L., Merrill, K.: Abstract harmonic analysis and wavelets in \(\mathbb R^n\). Contemp. Math. 247, 17–27 (1999)Google Scholar
  3. 3.
    Baggett, L., Carey, A., Moran, W., Ohring, P.: General existence theorems for orthonormal wavelets, an abstract approach. Publ. Res. Inst. Math. Sci. 31, 95–111 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baggett, L., Medina, H., Merrill, K.: Generalized multiresolution analyses and a construction procedure for all wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 5, 563–573 (1999)Google Scholar
  5. 5.
    Baggett, L., Courter, J., Merrill, K.: The construction of wavelets from generalized conjugate mirror filters in \(L^2(\mathbb R^n)\). Appl. Comput. Harmon. Anal. 13, 201–223 (2002)Google Scholar
  6. 6.
    Benedetto, J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanchard, J., Steffen, K.: Crystallographic Haar-type composite dilation wavelets. In: Cohen, J., Zyed, A.I. (eds.) Wavelets and Multiscale Analysis: Theory and Applications, pp 83–108. Birkhäuser, Boston (2011)CrossRefGoogle Scholar
  8. 8.
    Bownik, M., Rzeszotnik, Z.: On the existence of multiresolution analyses for framelets. Math. Ann. 332, 705–720 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Courter, J.: Construction of dilation d orthonormal wavelets. Ph.D. thesis, University of Colorado at Boulder (1999)Google Scholar
  10. 10.
    Courter, J.: Construction of dilation d wavelets. Contemp. Math. 247, 183–206 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Currey, B., Mayeli, A., Oussa, V.: Characterization of shift invariant spaces on a class of nilpotent Lie groups with applications. J. Fourier Anal. Appl. 20, 384–400 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    de Boor, C., DeVore, R., Ron, A.: The structure of finitely generated shift-invariant subspaces of \(L^2(\mathbb R^d)\). J. Funct. Anal. 119, 37–78 (1994)Google Scholar
  13. 13.
    Dixmier, J.: Von Neumann Algebras. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  14. 14.
    Folland, G.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  15. 15.
    Furst, V.: A characterization of semiorthogonal Parseval wavelets in abstract Hilbert spaces. J. Geom. Anal. 17, 569–591 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: The theory of wavelets with composite dilations. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 231–250. Birkhäuser, Boston (2006)CrossRefGoogle Scholar
  17. 17.
    Halmos, P.: Introduction to Hilbert Spaces and the Theory of Spectral Multiplicity. Chelsea, New York (1957)zbMATHGoogle Scholar
  18. 18.
    Han, D., Larson, D.: Frames, bases and group representations. Mem. Am. Math. Soc. 147 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Helson, H.: The Spectral Theorem. Springer, Berlin (1986)CrossRefGoogle Scholar
  20. 20.
    Hernandez, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  21. 21.
    Lemarié, P.G.: Base d’ondelettes sur les groupes de Lie stratifiés. Bull. Soc. Math. France 117, 211–232 (1989)MathSciNetCrossRefGoogle Scholar
  22. 22.
    MacArthur, J., Taylor, K.: Wavelets with crystal symmetry shifts. J. Fourier Anal. Appl. 17, 1109–1118 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mackey, G.: The Theory of Unitary Group Representations. University of Chicago Press, Chicago (1976)zbMATHGoogle Scholar
  24. 24.
    Mayeli, A.: Shannon multiresolution analysis on the Heisenberg group. J. Math. Anal. Appl. 348 671–684 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Papadakis, M.: Generalized frame multiresolution analysis of abstract Hilbert spaces. In: Benedetto, J., Zayed, A. (eds.) Sampling, Wavelets and Tomography, pp. 179–223. Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  26. 26.
    Ron, A., Shen, Z.: The wavelet dimension function is the trace function of a shift-invariant system. Proc. Am. Math. Soc. 131, 1385–1398 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Weber, E.: Frames and single wavelets for unitary groups. Can. J. Math. 54, 634–647 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kathy D. Merrill
    • 1
  1. 1.Department of MathematicsThe Colorado CollegeColorado SpringsUSA

Personalised recommendations