Skip to main content

Introduction

  • Chapter
  • First Online:
Generalized Multiresolution Analyses

Part of the book series: Applied and Numerical Harmonic Analysis ((LN-ANHA))

  • 481 Accesses

Abstract

The history of wavelets is a story that demonstrates the power of collaboration between different specialties within mathematics, physics, engineering, and computer science. In this chapter, we give a brief outline of this history, focusing on the evolution of the associated multiresolution structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akansu, A., Haddad, R.: Multiresolution Signal Decomposition: Transforms, Subbands and Wavelets. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  2. Baggett, L., Merrill, K.: Abstract harmonic analysis and wavelets in \(\mathbb R^n\). Contemp. Math. 247, 17–27 (1999)

    Google Scholar 

  3. Baggett, L., Carey, A., Moran, W., Ohring, P.: General existence theorems for orthonormal wavelets, an abstract approach. Publ. Res. Inst. Math. Sci. 31, 95–111 (1995)

    Article  MathSciNet  Google Scholar 

  4. Baggett, L., Medina, H., Merrill, K.: Generalized multiresolution analyses and a construction procedure for all wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 5, 563–573 (1999)

    Google Scholar 

  5. Baggett, L., Courter, J., Merrill, K.: The construction of wavelets from generalized conjugate mirror filters in \(L^2(\mathbb R^n)\). Appl. Comput. Harmon. Anal. 13, 201–223 (2002)

    Google Scholar 

  6. Baggett, L., Jorgensen, P., Merrill, K., Packer, J.: Construction of Parseval wavelets from redundant filter systems. J. Math. Phys. 46, 1–28 (2005)

    Article  MathSciNet  Google Scholar 

  7. Baggett, L., Jorgensen, P., Merrill, K., Packer, J.: A non-MRA Cr frame wavelet with rapid decay. Acta Appl. Math. 89, 251–270 (2006)

    Article  Google Scholar 

  8. Baggett, L., Larsen, N., Merrill, K., Packer, J, Raeburn, I.: Generalized multiresolution analyses with given multiplicity functions. J. Fourier Anal. Appl. 15, 616–633 (2009)

    Article  MathSciNet  Google Scholar 

  9. Baggett, L., Furst, V., Merrill, K., Packer, J.: Classification of generalized multiresolution analyses. J. Funct. Anal. 258, 4210–4228 (2010)

    Article  MathSciNet  Google Scholar 

  10. Benedetto, J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998)

    Article  MathSciNet  Google Scholar 

  11. Bildea, S., Dutkay, D., Picioroaga, G.: MRA super-wavelets. N. Y. J. Math. 11, 1–19 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Bohnstengel, J., Kesseböhmer, M.: Wavelets for iterated function systems. J. Funct. Anal. 259, 583–601 (2010)

    Article  MathSciNet  Google Scholar 

  13. Bownik, M., Rzeszotnik, Z.: The spectral function of shift-invariant spaces. Mich. Math. J. 51, 387–414 (2003)

    Article  MathSciNet  Google Scholar 

  14. Bownik, M., Rzeszotnik, Z., Speegle, D.: A characterization of dimension functions of wavelets. Appl. Comput. Harmon. Anal. 10, 71–92 (2001)

    Article  MathSciNet  Google Scholar 

  15. Bratteli, O., Jorgensen, P.: Wavelets Through a Looking Glass. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  16. Dai, X., Larson, D., Speegle, D.: Wavelet sets in \(\mathbb R^n\). J. Fourier Anal. Appl. 3, 451–456 (1997)

    Google Scholar 

  17. D’Andrea, J.: Constructing fractal wavelet frames. Numer. Funct. Anal. Optim. 33, 906–927 (2012)

    Article  MathSciNet  Google Scholar 

  18. D’Andrea, J., Merrill, K., Packer, J.: Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space. Contemp. Math. 451, 69–88 (2008)

    Article  MathSciNet  Google Scholar 

  19. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  20. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  Google Scholar 

  21. Daubechies, I.: Where do wavelets come from?–A personal point of view. Proc. IEEE 84, 510–513 (1996)

    Article  Google Scholar 

  22. de Boor, C., DeVore, R., Ron, A.: The structure of finitely generated shift-invariant subspaces of \(L^2(\mathbb R^d)\). J. Funct. Anal. 119, 37–78 (1994)

    Google Scholar 

  23. Dutkay, D., Jorgensen, P.: Wavelets on fractals. Rev. Math. Iberoamericana 22, 131–180 (2006)

    Article  MathSciNet  Google Scholar 

  24. Feichtinger, H., Gröchenig, K.: A unified approach to atomic decompositions through integrable group representations. In: Cwikel, M., et al. (eds.) Function Spaces and Applications, pp. 52–73. Springer, Berlin (1988)

    Chapter  Google Scholar 

  25. FĂĽhr, Hartmut: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Springer-Verlag, Berlin, Heidelberg (2005)

    Book  Google Scholar 

  26. Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: The theory of wavelets with composite dilations. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 231–250. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  27. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. 15, 723–736 (1984)

    Article  MathSciNet  Google Scholar 

  28. Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989)

    Article  MathSciNet  Google Scholar 

  29. Helson, H.: Lectures on Invariant Subspaces. Academic Press, New York (1964)

    MATH  Google Scholar 

  30. Hernandez, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  31. Larsen, N., Raeburn, I.: From filters to wavelets via direct limits. Contemp. Math. 414, 35–40 (2006)

    Article  MathSciNet  Google Scholar 

  32. Larson, D., Massopust, P.: Coxeter groups and wavelet sets. Contemp. Math. 451, 187–218 (2008)

    Article  MathSciNet  Google Scholar 

  33. MacArthur, J., Taylor, K.: Wavelets with crystal symmetry shifts. J. Fourier Anal. Appl. 17, 1109–1118 (2011)

    Article  MathSciNet  Google Scholar 

  34. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \(L^2(\mathbb R)\). Trans. Am. Math. Soc. 315, 69–87 (1989)

    Google Scholar 

  35. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  Google Scholar 

  36. Massopust, P.: Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press, Orlando (1995)

    MATH  Google Scholar 

  37. Merrill, K.: Simple wavelet sets for scalar dilations in \(L^2(\mathbb R^2)\). In: Jorgensen, P., Merrill, K., Packer, J. (eds.) Wavelets and Frames: A Celebration of the Mathematical Work of Lawrence Baggett, pp. 177–192. Birkhäuser, Boston (2008)

    Google Scholar 

  38. Merrill, K.: Smooth well-localized Parseval wavelets based on wavelet sets in \(\mathbb R^2\). Contemp. Math. 464, 161–175 (2008)

    Google Scholar 

  39. Merrill, K.: Simple wavelet sets for matrix dilations in \(\mathbb R^2\). Numer. Funct. Anal. Optim. 33, 1112–1125 (2012)

    Article  MathSciNet  Google Scholar 

  40. Merrill, K.: Simple wavelet sets in \(\mathbb R^n\). J. Geom. Anal. 25, 1295–1305 (2015)

    Google Scholar 

  41. Meyer, Y.: Ondelettes, fonctions splines et analyses graduées. Rapport Ceremade 8703 (1987)

    Google Scholar 

  42. Meyer, Y.: Wavelets: Algorithms and Applications. Society for Industrial and Applied Mathematics, Philadelphia (1993)

    MATH  Google Scholar 

  43. Papadakis, M.: Generalized frame multiresolution analysis of abstract Hilbert spaces. In: Benedetto, J., Zayed, A. (eds.) Sampling, Wavelets and Tomography, pp. 179–223. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  44. Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of \(L_2(\mathbb R^d)\). Can. J. Math. 47, 1051–1094 (1995)

    Google Scholar 

  45. Ron, A., Shen, Z.: Affine systems in \(L^2(\mathbb R^d)\): the analysis of the analysis operator. J. Fourier Anal. Appl. 3, 408–447 (1997)

    Google Scholar 

  46. Ron, A., Shen, Z.: The wavelet dimension function is the trace function of a shift-invariant system. Proc. Am. Math. Soc. 131, 1385–1398 (2002)

    Article  MathSciNet  Google Scholar 

  47. Weber, E.: Applications of the wavelet multiplicity function. Contemp. Math. 247, 297–306 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merrill, K.D. (2018). Introduction. In: Generalized Multiresolution Analyses. Applied and Numerical Harmonic Analysis(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-99175-7_1

Download citation

Publish with us

Policies and ethics