Skip to main content

On the Verification of Weighted Kripke Structures Under Uncertainty

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11024))

Abstract

We study the problem of checking weighted CTL properties for weighted Kripke structures in presence of imprecise weights. We consider two extensions of the notion of weighted Kripke structures, namely (i) parametric weighted Kripke structures, having transitions weights modelled as affine maps over a set of parameters and, (ii) weight-uncertain Kripke structures, having transition labelled by real-valued random variables as opposed to precise real valued weights.

We address this problem by using extended parametric dependency graphs, a symbolic extension of dependency graphs by Liu and Smolka. Experiments performed with a prototype tool implementation show that our approach outperforms by orders of magnitude an adaptation of a state-of-the-art tool for WKSs.

Work supported by the Advanced ERC Grant nr. 867096 (LASSO).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our is a special case of the so called affine transformation matrix (or projective transformation matrix) representation for generic affine tranformations.

  2. 2.

    As usual, \(\bigsqcap \emptyset = A_\top \) and \(\bigsqcup \emptyset = A_\top \).

  3. 3.

    To simplify the exposition, here unevaluated expressions are assumed to be modulo commutativity and associativity of \(+\).

  4. 4.

    In fact, the vector \(\mathbf {X}\) is a multivariate random variable \(\mathbf {X} :\Omega \rightarrow \mathbb {R}^n\) with marginals \(X_i :\Omega \rightarrow \mathbb {R}_{\ge 0}\) (\(i= 1..n\)).

  5. 5.

    The PVTool2 is available at https://github.com/AcId9381/PVTool.

  6. 6.

    The UVTool is implemented using Mathematica [16] and is available at http://people.cs.aau.dk/~giovbacci/tools.html.

  7. 7.

    The WKTool is available at https://github.com/jonasfj/WKTool.

References

  1. Avni, G., Kupferman, O.: Stochastization of weighted automata. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 89–102. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_7

    Chapter  MATH  Google Scholar 

  2. Bacci, G., Hansen, M., Larsen, K.G.: On the verification of weighted Kripke structures under uncertainty. Full version, Aalborg University (2018). http://people.cs.aau.dk/~giovbacci/papers/uncertwks-full.pdf

  3. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_17

    Chapter  Google Scholar 

  5. Christoffersen, P., Hansen, M., Mariegaard, A., Ringsmose, J.T., Larsen, K.G., Mardare, R.: Parametric verification of weighted systems. In: 2nd International Workshop on Synthesis of Complex Parameters, SynCoP 2015, April 11, 2015, London, United Kingdom, pp. 77–90 (2015)

    Google Scholar 

  6. Dalsgaard, A.E., et al.: Extended dependency graphs and efficient distributed fixed-point computation. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 139–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57861-3_10

    Chapter  Google Scholar 

  7. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

    Book  MATH  Google Scholar 

  8. Fahrenberg, U., Larsen, K.G., Thrane, C.: A quantitative characterization of weighted Kripke structures in temporal logic. Comput. Inf. 29, 1311–1324 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient model-checking of weighted CTL with upper-bound constraints. STTT 18(4), 409–426 (2016)

    Article  Google Scholar 

  10. Singh Kambo, N., Kotz, S.: On exponential bounds for binomial probabilities. Ann. Inst. Stat. Math. 18(1), 277 (1966)

    Article  MathSciNet  Google Scholar 

  11. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points (extended abstract). In: Proceedings of the Automata, Languages and Programming, 25th International Colloquium, ICALP 1998, Aalborg, Denmark, July 13-17, 1998, pp. 53–66 (1998)

    Google Scholar 

  12. Monniaux, D.: Quantifier elimination by Lazy model enumeration. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_51

    Chapter  Google Scholar 

  13. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)

    Article  MathSciNet  Google Scholar 

  14. Srkk, S.: Bayesian Filtering and Smoothing. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  15. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21–23 October 1985, pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

  16. Wolfram Research, Inc., Mathematica, Version 11.2. Champaign, IL (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Bacci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bacci, G., Hansen, M., Larsen, K.G. (2018). On the Verification of Weighted Kripke Structures Under Uncertainty. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99154-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99153-5

  • Online ISBN: 978-3-319-99154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics