Skip to main content

Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-selfadjoint Operators

  • Conference paper
  • First Online:
Formal and Analytic Solutions of Diff. Equations (FASdiff 2017)

Abstract

In the paper, the review of the papers [26,27,28,29,30, 32,33,34] devoted to the semiclassical asymptotic behavior of the eigenvalues of some nonself-adjoint operators important for applications is given. These operators are the Schrödinger operator with complex periodic potential and the operator of induction. It turns out that the asymptotics of the spectrum can be calculated using the quantization conditions, which can be represented as the condition that the integrals of a holomorphic form over the cycles on the corresponding complex Lagrangian manifold, which is a Riemann surface of constant energy, are integers. In contrast to the real case (the Bohr–Sommerfeld–Maslov formulas), to calculate a chosen spectral series, it is sufficient to assume that the integral over only one of the cycles takes integer values, and different cycles determine different parts of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maslov, V.P.: Asymptotic Methods and Perturbation Theory. MGU (1965)

    Google Scholar 

  2. Maslov, V.P., Fedoriuk, M.V.: Quasiclassical Approximation for the Equations of Quantum Mechanics. Nauka (1976)

    Google Scholar 

  3. Davies, E.B.: Pseudospectra of differential operators. Oper. Theory 4(3), 243–262 (2000)

    Google Scholar 

  4. Evgrafov, M.A., Fedoriuk, M.V.: Asymptotic behavior of solutions of the equation \(w^{\prime \prime }-p(z,\lambda )w=0\) as \(\lambda \rightarrow \infty \) in the complex \(z\)-plane. Uspekhi Mat Nauk 21(2), 3–50 (1966)

    MathSciNet  Google Scholar 

  5. Fedoryuk, M.V.: Asymptotic Analysis: Linear Ordinary Differential Equations. Springer, Berlin (1993)

    Chapter  Google Scholar 

  6. Gohberg, I.T., Krein, M.G.: Introduction to the Theory of Linear Nonself-adjoint Operators. American Mathematical Society (1969)

    Google Scholar 

  7. Trefethen, L.N.: Pseudospectra of linear operators. In: ISIAM 95: Proceedings of the Third International Congress of Industrial and Applied Mathmatics, pp. 401–434 (1996)

    Google Scholar 

  8. Drazin, R.G., Reid, W.H.: Hydrodynamic Stability. Cambridge (1981)

    Google Scholar 

  9. Zel’dovich, Y.B., Ruzmaikin, A.A.: The hydromagnetic dynamo as the source of planetary, solar, and galactic magnetism. Uspekhi Fiz Nauk 152(2), 263–284 (1987)

    Article  Google Scholar 

  10. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98 (2007)

    Google Scholar 

  11. Gulden, T., Janas, M., Koroteev, P., Kamenev, A.: Statistical mechanics of coulomb gases as quantum theory on Riemann surfaces. JETP 144(9) (2013)

    Google Scholar 

  12. Stepin, S.A.: Nonself-adjoint singular perturbations: a model of the passage from a discrete spectrum to a continuous spectrum. Rus. Math. Surv. 50(6), 1311–1313 (1995)

    Article  Google Scholar 

  13. Shkalikov, A.A.: On the limit behavior of the spectrum for large values of the parameter of a model problem. Math. Notes 62(5), 796–799 (1997)

    Article  MathSciNet  Google Scholar 

  14. Stepin, S.A.: A model of the transition from a discrete spectrum to a continuous spectrum in singular perturbation theory. (Russian) Fundam. Prikl. Mat. 3(4), 1199–1227 (1997)

    Google Scholar 

  15. Arzhanov, A.A., Stepin, S.A.: Semiclassical spectral asymptotics and the Stokes phenomenon for the weber equation. Dokl. Akad. Nauk 378(1), 18–21 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Tumanov, S.N., Shkalikov, A.A.: On the limit behaviour of the spectrum of a model problem for the Orr-Sommerfeld equation with poiseuille profile. Izv Math. 66(4), 829–856 (2002)

    Article  MathSciNet  Google Scholar 

  17. Shkalikov, A.A.: Spectral portraits of the Orr-Sommerfeld operator with large reynolds numbers. J. Math. Sci. 124(6), 5417–5441 (2004)

    Article  MathSciNet  Google Scholar 

  18. D’yachenko, A.V., Shkalikov, A.A.: On a model problem for the Orr–Sommerfeld equation with linear profile. Funktsional Anal i Prilozhen 36(3), 228–232 (2002)

    Google Scholar 

  19. Stepin, S.A., Titov, V.A.: On the concentration of spectrum in the model problem of singular perturbation theory. Dokl. Math. 75(2), 197–200 (2007)

    Article  MathSciNet  Google Scholar 

  20. Pokotilo, V.I., Shkalikov, A.A.: Semiclassical approximation for a nonself-adjoint Sturm-Liouville problem with a parabolic potential. Math. Notes 86(3), 442–446 (2009)

    Article  MathSciNet  Google Scholar 

  21. Kusainova, L.K., Monashova, AZh, Shkalikov, A.A.: Asymptotics of the eigenvalues of the second-order nonself-adjoint differential operator on the axis. Mat. Zametki 93(4), 630–633 (2013)

    Article  Google Scholar 

  22. Stepin, S.A., Fufaev, V.V.: Phase integral method in the problem of quasiclassical localization of spectra. Dokl. Math. 91(3), 318–322 (2015)

    Article  MathSciNet  Google Scholar 

  23. Tumanov, S.N., Shkalikov, A.A.: The limit spectral graph in semiclassical approximation for the SturmLiouville problem with complex polynomial potential. Dokl. Math. 92(3), 773–777 (2015)

    Article  MathSciNet  Google Scholar 

  24. Stepin, S.A., Fufaev, V.V.: The phase-integral method in a problem of singular perturbation theory. Izvestiya: Math. 81(2), 359–390 (2017)

    Article  MathSciNet  Google Scholar 

  25. Tumanov, S.N., Shkalikov, A.A.: Eigenvalue dynamics of a PT-symmetric Sturm Liouville operator and criteria for similarity to a self-adjoint or a normal operator. Dokl. Math. 96(3), 607–611 (2017)

    Article  Google Scholar 

  26. Galtsev, S.V., Shafarevich, A.I.: Spectrum and pseudospectrum of nonself-adjoint Schrödinger operators with periodic coefficients. Mat Zametki 80(3), 456–466 (2006)

    Article  MathSciNet  Google Scholar 

  27. Galtsev, S.V., Shafarevich, A.I.: Quantized Riemann surfaces and semiclassical spectral series for a nonself-adjoint Schrödinger operator with periodic coefficients. Theor. Math. Phys. 148(2), 206–226 (2006)

    Article  Google Scholar 

  28. Esina, A.I., Shafarevich, A.I.: Quantization conditions on Riemannian surfaces and the semiclaical spectrum of the schrödinger operator with complex potential. Mat Zametki 88(2), 209–227 (2010)

    MATH  Google Scholar 

  29. Esina, A.I., Shafarevich, A.I.: Asymptotics of the spectrum and the eigenfunctions of the operator of magnetic induction on a two-dimensional compact surface of revolution. Mat Zametki 95(3), 417–432 (2014)

    Article  Google Scholar 

  30. Esina, A.I., Shafarevich, A.I.: Analogs of Bohr – Sommerfeld – Maslov quantization conditions ton Riemann surfaces and spectral series of nonself-adjoint operators. Rus. J. Math. Phys. 20(2), 172–181 (2013)

    Article  Google Scholar 

  31. Esina, A.I.: Asymptotic solutions of the induction equation (“Asimptoticheskie resheniya uravneniya indukcii”, in Russian). Ph.D Thesis (kandidatskaya dissertaciya), Moscow State University, Moscow (2014)

    Google Scholar 

  32. Roohian, H., Shafarevich, A.I.: Semiclassical asymptotics of the spectrum of a nonself-adjoint operator on the sphere. Rus. J. Math. Phys. 16(2), 309–315 (2009)

    Article  Google Scholar 

  33. Roohian, H., Shafarevich, A.I.: Semiclassical asymptotic behavior of the spectrum of a nonself-adjoint elliptic operator on a two-dimensional surface of revolution. Rus. J. Math. Phys. 17(3), 328–334 (2010)

    Article  Google Scholar 

  34. Nekhaev, D.V., Shafarevich, A.I.: A quasiclassical limit of the spectrum of a Schrodinger operator with complex periodic potential. Sbornik: Math. 208(10), 1535–1556 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the referee for very useful comments. The research was supported by the Russian Scientific Foundation (grant 16-11-10069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Shafarevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shafarevich, A. (2018). Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-selfadjoint Operators. In: Filipuk, G., Lastra, A., Michalik, S. (eds) Formal and Analytic Solutions of Diff. Equations . FASdiff 2017. Springer Proceedings in Mathematics & Statistics, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-99148-1_9

Download citation

Publish with us

Policies and ethics