Skip to main content

ThespisDIIP: Distributed Integrity Invariant Preservation

  • Conference paper
  • First Online:
Book cover Database and Expert Systems Applications (DEXA 2018)

Abstract

Thespis is a distributed database middleware that leverages the Actor model to implement causal consistency over an industry-standard DBMS, whilst abstracting complexities for application developers behind a REST open-protocol interface. ThespisDIIP is an extension that treats the concept of integrity invariance preservation for the class of problems where value changes must be satisfied according to a Linear Arithmetic Inequality constraint. An example of this constraint is a system enforcing a constraint that a transaction is only accepted if there are sufficient funds in a bank account. Our evaluation considers correctness, performance and scalability aspects of ThespisDIIP. We also run empirical experiments using YCSB to show the efficacy of the approach for a variety of workloads and a number of conditions, determining that integrity invariants are preserved in a causally-consistent distributed database, whilst minimising latency in the user’s critical path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Akka.NET - http://getakka.net/.

  2. 2.

    Akka - http://akka.io/.

  3. 3.

    Google Cloud Platform - https://cloud.google.com/.

References

  1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: definitions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995)

    Article  MathSciNet  Google Scholar 

  2. Almeida, P.S., Shoker, A., Moreno, C.B.: Exactly-once quantity transfer (2015)

    Google Scholar 

  3. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A.: Coordination avoidance in database systems. Proc. VLDB Endow. 8(3), 185–196 (2014)

    Article  Google Scholar 

  4. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Feral concurrency control: an empirical investigation of modern application integrity. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1327–1342. ACM (2015)

    Google Scholar 

  5. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 761–772. ACM (2013)

    Google Scholar 

  6. Balegas, V., Preguiça, N., Duarte, S., Ferreira, C., Rodrigues, R.: IPA: invariant-preserving applications for weakly-consistent replicated databases. arXiv preprint arXiv:1802.08474 (2018)

  7. Barbará-Millá, D., Garcia-Molina, H.: The demarcation protocol: a technique for maintaining constraints in distributed database systems. VLDB J. - Int. J. Very Large Data Bases 3(3), 325–353 (1994)

    Article  Google Scholar 

  8. Borr, A.: Transaction monitoring in encompass. In: Proceedings of 7th VLDB (1981)

    Google Scholar 

  9. Brewer, E.A.: Towards robust distributed systems. In: PODC, vol. 7 (2000)

    Google Scholar 

  10. Camilleri, C., Vella, J.G., Nezval, V.: Thespis: actor-based causal consistency. In: 2017 28th International Workshop on Database and Expert Systems Applications (DEXA), pp. 42–46. IEEE (2017)

    Google Scholar 

  11. Cetintemel, U., Ozden, B., Franklin, M.J., Silberschatz, A.: Design and evaluation of redistribution strategies for wide-area commodity distribution. In: 2001 21st International Conference on Distributed Computing Systems, pp. 154–161. IEEE (2001)

    Google Scholar 

  12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154. ACM (2010)

    Google Scholar 

  13. Danaher, P.J., Mullarkey, G.W., Essegaier, S.: Factors affecting web site visit duration: a cross-domain analysis. J. Market. Res. 43(2), 182–194 (2006)

    Article  Google Scholar 

  14. Elbushra, M.M., Lindström, J.: Eventual consistent databases: state of the art. Open J. Databases (OJDB) 1(1), 26–41 (2014)

    Google Scholar 

  15. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

    Article  Google Scholar 

  16. Golubchik, L., Thomasian, A.: Token allocation in distributed systems. In: Proceedings of the 12th International Conference on Distributed Computing Systems, pp. 64–71. IEEE (1992)

    Google Scholar 

  17. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M., Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08755-9_9

    Chapter  Google Scholar 

  18. Herlihy, M.: Concurrency versus availability: atomicity mechanisms for replicated data. ACM Trans. Comput. Syst. (TOCS) 5(3), 249–274 (1987)

    Article  Google Scholar 

  19. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

    Google Scholar 

  20. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, pp. 235–245. Morgan Kaufmann Publishers Inc. (1973)

    Google Scholar 

  21. Ivica, S.B., Aleksandar, M.R., Radomir, M.A.: Crypto-currency and e-financials. J. Econ. Law 132 (2014)

    Google Scholar 

  22. Jansen, B.J., Spink, A.: An analysis of web documents retrieved and viewed. In: International Conference on Internet Computing, pp. 65–69. Citeseer (2003)

    Google Scholar 

  23. Krishnakumar, N., Bernstein, A.J.: High throughput escrow algorithms for replicated databases. In: VLDB, vol. 1992, pp. 175–186 (1992)

    Google Scholar 

  24. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2), 133–169 (1998)

    Article  Google Scholar 

  25. Mahajan, P., Alvisi, L., Dahlin, M.: Consistency, availability, and convergence. University of Texas at Austin Technical report, 11 (2011)

    Google Scholar 

  26. Nah, F.F.-H.: A study on tolerable waiting time: how long are web users willing to wait? Behav. Inf. Technol. 23(3), 153–163 (2004)

    Article  Google Scholar 

  27. O’Neil, P.E.: The Escrow transactional model. ACM Trans. Database Syst. 4(11), 405–430 (1986)

    Article  Google Scholar 

  28. Radev, R.: Representing a relational database as a directed graph and some applications. In: Balkan Conference in Informatics, p. 1 (2013)

    Google Scholar 

  29. Soparkar, N., Silberschatz, A.: Data-valued partitioning and virtual messages. In: Proceedings of the Ninth ACM Symposium on Principles of Database Systems, pp. 357–367. ACM (1990)

    Google Scholar 

  30. Takaishi, M., Leguizamo, C.P., Kimura, S., Takanuki, R.: Autonomous multi-agent-based data allocation technology in decentralized database systems for timeliness. In: Proceedings of Autonomous Decentralized Systems, ISADS 2005, pp. 25–32. IEEE (2005)

    Google Scholar 

  31. Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40–44 (2009)

    Article  Google Scholar 

  32. Zona, R.: The economic impacts of unacceptable web site download speeds. Technical report, Research report (1999). http://www.zonaresearch.com

Download references

Acknowledgement

This work is partly funded by the ENDEAVOUR Scholarship Scheme (Malta), part-financed by the European Union – European Social Fund (ESF) under Operational Programme II – Cohesion Policy 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Camilleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camilleri, C., Vella, J.G., Nezval, V. (2018). ThespisDIIP: Distributed Integrity Invariant Preservation. In: Elloumi, M., et al. Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information Science, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-319-99133-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99133-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99132-0

  • Online ISBN: 978-3-319-99133-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics