Inter-device Sensor-Fusion for Action Authorization on Industrial Mobile Robots

  • Sarah HaasEmail author
  • Andrea Höller
  • Thomas Ulz
  • Christian Steger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11093)


Usage of mobile robots in industry increased significantly in recent years. However, mobile robots introduce additional safety issues for human workforce and pose a higher risk of failures in production due to possible abnormal robot behavior. Such abnormal behavior could, among other things, be caused by security weaknesses that entail attacks. These problems lead to a need for action authorization mechanisms to protect humans and mitigate possible costly failures. In this paper, we propose an authorization mechanism for critical actuator actions on industrial mobile robots. The mechanism relies on security principles that prevent adversaries from unauthorized action execution. To the best knowledge of the authors, no similar concept for secured action authorization for industrial mobile robots is currently known in research. Our evaluation shows more than 80% of additional safety hazard causes introduced by the lack of security can be mitigated with the proposed authorization mechanism.



This work has been performed in the project Power Semiconductor and Electronics Manufacturing 4.0 - (Semi40), under grant agreement No 962466. The project is cofunded by grants from Austria, Germany, Italy, France, Portugal and - Electronic Component Systems for European Leadership Joint Undertaking (ECSEL JU).


  1. 1.
    ISO/IEC 11889-1 Trusted platform module library - Part 1: Architecture, August 2015Google Scholar
  2. 2.
    Robotic Industries Association: ANSI/RIA R15.06-2012 AmericanNational Standard for Industrial Robots and Robot Systems - Safety Requirements. Technical report (2013)Google Scholar
  3. 3.
    Bartos, R.J.: System safety analysis of an autonomous mobile robot. Technical report, Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project (1994)Google Scholar
  4. 4.
    Bloomfield, R., Netkachova, K., Stroud, R.: Security-informed safety: if it’s not secure, it’s not safe. In: Gorbenko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol. 8166, pp. 17–32. Springer, Heidelberg (2013). Scholar
  5. 5.
    Cirani, S., Picone, M., Gonizzi, P., Veltri, L., Ferrari, G.: IoT-OAS: an OAuth-based authorization service architecture for secure services in IoT scenarios. IEEE Sens. J. 15(2), 1224–1234 (2015)CrossRefGoogle Scholar
  6. 6.
    Fraser, B.Y.: Site Security Handbook (1997). RFC2196Google Scholar
  7. 7.
    Gonçalves, J., Lima, J., Oliveira, H., Costa, P.: Sensor and actuator modeling of a realistic wheeled mobile robot simulator. In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2008, pp. 980–985. IEEE (2008)Google Scholar
  8. 8.
    Grieco, L.A., et al.: IoT-aided robotics applications: technological implications, target domains and open issues. Comput. Commun. 54, 32–47 (2014)CrossRefGoogle Scholar
  9. 9.
    Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE 85(1), 6–23 (1997)CrossRefGoogle Scholar
  10. 10.
    Haller, N.: The S/KEY One-Time Password System (1995). RFC 1760Google Scholar
  11. 11.
    He, H., et al.: The security challenges in the IoT enabled cyber-physical systems and opportunities for evolutionary computing other computational intelligence. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1015–1021, July 2016Google Scholar
  12. 12.
    Kam, M., Zhu, X., Kalata, P.: Sensor fusion for mobile robot navigation. Proc. IEEE 85(1), 108–119 (1997)CrossRefGoogle Scholar
  13. 13.
    Kim, J.H., Keller, B., Lattimer, B.Y.: Sensor fusion based seek-and-find fire algorithm for intelligent firefighting robot. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1482–1486, July 2013Google Scholar
  14. 14.
    Lamport, L.: Password authentication with insecure communication. Commun. ACM 24(11), 770–772 (1981)CrossRefGoogle Scholar
  15. 15.
    Line, M.B., Nordland, O., Røstad, L., Tøndel, I.A.: Safety vs security? In: Proceedings of 8th International Conference on Probabilistic Safety Assessment and Management (PSAM 2006), New Orleans, USA (2006)Google Scholar
  16. 16.
    Lynen, S., Achtelik, M.W., Weiss, S., Chli, M., Siegwart, R.: A robust and modular multi-sensor fusion approach applied to MAV navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923–3929, November 2013Google Scholar
  17. 17.
    Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-hazards and security-threat analysis method for automotive systems. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250. Springer, Cham (2015). Scholar
  18. 18.
    Mirzamohammadi, S., Chen, J.A., Sani, A.A., Mehrotra, S., Tsudik, G.: Ditio: trustworthy auditing of sensor activities in mobile & IoT devices. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, p. 14. ACM (2017)Google Scholar
  19. 19.
    M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: HOTP: an HMAC-based one-time password algorithm. Technical report (2005)Google Scholar
  20. 20.
    Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for security requirements. In: Symposium on Requirements Engineering for Information Security (SREIS), vol. 2005, pp. 1–8. Citeseer (2005)Google Scholar
  21. 21.
    Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.: RoboCup logistics league sponsored by festo: a competitive factory automation testbed. In: Jeschke, S., Isenhardt, I., Hees, F., Henning, K. (eds.) Automation, Communication and Cybernetics in Science and Engineering 2015/2016, pp. 605–618. Springer, Cham (2016). Scholar
  22. 22.
    Pfitzner, C., et al.: 3D Multi-sensor data fusion for object localization in industrial applications. In: 41st International Symposium on Robotics, ISR/Robotik 2014, pp. 1–6, June 2014Google Scholar
  23. 23.
    Popovici, A., Frei, A., Alonso, G.: A proactive middleware platform for mobile computing. In: Endler, M., Schmidt, D. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 455–473. Springer, Heidelberg (2003). Scholar
  24. 24.
    Rezvani, M., Ignjatovic, A., Bertino, E., Jha, S.: Secure data aggregation technique for wireless sensor networks in the presence of collusion attacks. IEEE Trans. Dependable Secure Comput. 12(1), 98–110 (2015)CrossRefGoogle Scholar
  25. 25.
    Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: attribute-based keyword search with fine-grained owner-enforced search authorization in the cloud. In: 2014 Proceedings IEEE, INFOCOM, pp. 226–234. IEEE (2014)Google Scholar
  26. 26.
    Yi, X., Bouguettaya, A., Georgakopoulos, D., Song, A., Willemson, J.: Privacy protection for wireless medical sensor data. IEEE Trans. Dependable Secure Comput. 13(3), 369–380 (2016)CrossRefGoogle Scholar
  27. 27.
    Zuehlke, D.: SmartFactory-towards a factory-of-things. Ann. Rev. Control 34(1), 129–138 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sarah Haas
    • 1
    Email author
  • Andrea Höller
    • 1
  • Thomas Ulz
    • 2
  • Christian Steger
    • 2
  1. 1.Development Center GrazInfineon Technologies Austria AGGrazAustria
  2. 2.Institute for Technical InformaticsGraz University of TechnologyGrazAustria

Personalised recommendations