Advertisement

MORE: MOdel-based REdundancy for Simulink

  • Kai DingEmail author
  • Andrey Morozov
  • Klaus Janschek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11093)

Abstract

Fault tolerance plays a significant role in the safety-critical system design that enables a system to continue performing its intended functions in presence of faults. Redundancy is the key underlying method to achieve fault tolerance. Hardware redundancy and software redundancy are well-known redundancy techniques. In case of model-based development, redundancy mechanisms can be applied directly at the model level, e.g. to a Simulink model. This paper introduces a new, model-based redundancy technique to tolerate hardware faults, called model-based redundancy (MORE). Applications of fault-tolerant design patterns, such as comparison, voting, and sparing, to Simulink models are introduced. A Simulink PID controller model is demonstrated as a case study to show the effectiveness and feasibility of the introduced approach. The paper also addresses the mutual optimization of reliability properties and system performance. We apply the MORE separately to the P, I, D terms and analyze system performance and achieved reliability properties, evaluated using a stochastic dual-graph error propagation model.

Keywords

Fault tolerance Redundancy Model-based design Dependability Reliability Design patterns Stochastic method Soft errors Silent data corruption Simulink 

Notes

Acknowledgements

This work is supported by the German Research Foundation (DFG) under project No. JA 1559/5-1.

References

  1. 1.
    Ding, K., Morozov, A., Janschek, K.: Classification of hierarchical fault-tolerant design patterns. In: 2017 IEEE 15th International Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 612–619. IEEE (2017)Google Scholar
  2. 2.
    Ding, K., Mutzke, T., Morozov, A., Janschek, K.: Automatic transformation of UML system models for model-based error propagation analysis of mechatronic systems. IFAC-PapersOnLine 49(21), 439–446 (2016)CrossRefGoogle Scholar
  3. 3.
    Eriksson, H.: D 5.1 - simulating hardware-related faults at model level. Technical report (2011)Google Scholar
  4. 4.
    Johnson, B.W.: Design and Analysis of Fault Tolerant Digital Systems. Addison-Wesley Longman Publishing Co. Inc., Boston (1988)Google Scholar
  5. 5.
    Karnik, T., Hazucha, P.: Characterization of soft errors caused by single event upsets in cmos processes. IEEE Trans. Dependable Secure Comput. 1(2), 128–143 (2004)CrossRefGoogle Scholar
  6. 6.
    Koopman, P.: A case study of Toyota unintended acceleration and software safety. Presentation, September 2014Google Scholar
  7. 7.
    Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Morgan Kaufmann, Burlington (2010)zbMATHGoogle Scholar
  8. 8.
    Kuvaiskii, D., Oleksenko, O., Bhatotia, P., Felber, P., Fetzer, C.: Elzar: triple modular redundancy using Intel AVX. In: Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2016) (2016)Google Scholar
  9. 9.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_47CrossRefGoogle Scholar
  10. 10.
    Lyu, M.R., et al.: Handbook of Software Reliability Engineering (1996)Google Scholar
  11. 11.
    Morozov, A.: Dual-graph Model for Error Propagation Analysis of Mechatronic Systems. Jörg Vogt Verlag, Dresden (2012)Google Scholar
  12. 12.
    Morozov, A., Janschek, K.: Probabilistic error propagation model for mechatronic systems. Mechatronics 24(8), 1189–1202 (2014).  https://doi.org/10.1016/j.mechatronics.2014.09.005CrossRefGoogle Scholar
  13. 13.
    Morozov, A., Janschek, K.: Flight control software failure mitigation: design optimization for software-implemented fault detectors. IFAC-PapersOnLine 49(17), 248–253 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mukherjee, S.S., Kontz, M., Reinhardt, S.K.: Detailed design and evaluation of redundant multi-threading alternatives. In: Proceedings of 29th Annual International Symposium on Computer Architecture, pp. 99–110. IEEE (2002)Google Scholar
  15. 15.
    Oh, N., Shirvani, P.P., McCluskey, E.J.: Error detection by duplicated instructions in super-scalar processors. IEEE Trans. Reliab. 51(1), 63–75 (2002)CrossRefGoogle Scholar
  16. 16.
    Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous multithreading, vol. 28. ACM (2000)Google Scholar
  17. 17.
    Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: Swift: software implemented fault tolerance. In: Proceedings of the International Symposium on Code Generation and Optimization, pp. 243–254. IEEE Computer Society (2005)Google Scholar
  18. 18.
    Rink, N.A., Castrillon, J.: Trading fault tolerance for performance in an encoding. In: Proceedings of the Computing Frontiers Conference, pp. 183–190. ACM (2017)Google Scholar
  19. 19.
    Saraoğlu, M., Morozov, A., Söylemez, M.T., Janschek, K.: ErrorSim: a tool for error propagation analysis of simulink models. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 245–254. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66266-4_16CrossRefGoogle Scholar
  20. 20.
    Schiffel, U., Schmitt, A., Süßkraut, M., Fetzer, C.: ANB- and ANBDmem-encoding: detecting hardware errors in software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 169–182. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15651-9_13CrossRefGoogle Scholar
  21. 21.
    Schroeder, B., Pinheiro, E., Weber, W.D.: Dram errors in the wild: a large-scale field study. In: ACM SIGMETRICS Performance Evaluation Review, vol. 37, pp. 193–204. ACM (2009)Google Scholar
  22. 22.
    Semiconductors Technology: Soft errors in electronic memory (2012)Google Scholar
  23. 23.
    Svenningsson, R.: Model-Implemented Fault Injection for Robustness Assessment. KTH, Stockholm (2011)Google Scholar
  24. 24.
    Svenningsson, R., Eriksson, H., Vinter, J., Törngren, M.: Model-implemented fault injection for hardware fault simulation. In: 2010 Workshop on Model-Driven Engineering, Verification, and Validation (MoDeVVa), pp. 31–36. IEEE (2010)Google Scholar
  25. 25.
    Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: a MODel-implemented fault injection tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 210–222. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15651-9_16CrossRefGoogle Scholar
  26. 26.
    Swift, G.M., Guertin, S.M.: In-flight observations of multiple-bit upset in DRAMs. IEEE Trans. Nucl. Sci. 47(6), 2386–2391 (2000)CrossRefGoogle Scholar
  27. 27.
    Verzola, I., Lagny, A.E., Biswas, J.: A predictive approach to failure estimation and identification for space systems operations. In: SpaceOps 2014 Conference, p. 1722 (2014)Google Scholar
  28. 28.
    Vinter, J., Johansson, A., Folkesson, P., Karlsson, J.: On the design of robust integrators for fail-bounded control systems. In: International Conference on Dependable Systems and Networks: 22/06/2003-25/06/2003, pp. 415–424. IEEE Communications Society (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of AutomationTechnische Universität DresdenDresdenGermany

Personalised recommendations