Advertisement

Random Additive Control Flow Error Detection

  • Jens VankeirsbilckEmail author
  • Niels Penneman
  • Hans Hallez
  • Jeroen Boydens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11093)

Abstract

Today, embedded systems are being used in many (safety-critical) applications. However, due to their decreasing feature size and supply voltage, such systems are more susceptible to external disturbances such as electromagnetic interference. These external disturbances are able to introduce bit-flips inside the microcontroller’s hardware. In turn, these bit-flips may also corrupt the software. A possible software corruption is a control flow error. This paper proposes a new software-implemented control flow error detection technique. The advantage of our technique, called Random Additive Control Flow Error Detection, is a high detection ratio with a low execution time overhead. Most control flow errors are detected, while having a lower execution time overhead than the considered existing techniques.

Keywords

Fault tolerance Resilient software Software-implemented control flow error detection Erroneous bit-flips 

Notes

Acknowledgement

This work is supported by a research grant from the Baekeland program of the Flemish Agency for Innovation and Entrepreneurship (VLAIO) in cooperation with Televic Healthcare NV, under grant agreement IWT 150696.

References

  1. 1.
  2. 2.
    Integrating IoT and advanced technology design, application development and processing environments (2017). https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
  3. 3.
    Baffreau, S., Bendhia, S., Ramdani, M., Sicard, E.: Characterisation of microcontroller susceptibility to radio frequency interference. In: Proceedings of the Fourth IEEE International Caracas Conference on Devices, Circuits and Systems, pp. 1031.1–1031.5. IEEE (2002)Google Scholar
  4. 4.
    Baumann, R.: Soft errors in advanced computer systems. IEEE Des. Test Comput. 22(3), 258–266 (2005)CrossRefGoogle Scholar
  5. 5.
    De Keulenaer, R.: Softwarebeveiliging van smartcards tegen laseraanvallen. Master’s thesis, Universiteit Gent (2013)Google Scholar
  6. 6.
    Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: a free, commercially representative embedded benchmark suite. In: 2001 IEEE International Workshop on Workload Characterization, WWC-4, pp. 3–14. IEEE (2001)Google Scholar
  7. 7.
    Jagannathan, S., et al.: Temperature dependence of soft error rate in flip-flop designs. In: 2012 IEEE International Reliability Physics Symposium (IRPS), pp. SE.2.1–SE.2.6. IEEE (2012)Google Scholar
  8. 8.
    Li, A., Hong, B.: Software implemented transient fault detection in space computer. Aerosp. Sci. Technol. 11(2), 245–252 (2007)CrossRefGoogle Scholar
  9. 9.
    Nicolescu, B., Savaria, Y., Velazco, R.: SIED: software implemented error detection. In: 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Proceedings, pp. 589–596. IEEE (2003)Google Scholar
  10. 10.
    Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signatures. IEEE Trans. Reliab. 51(1), 111–122 (2002)CrossRefGoogle Scholar
  11. 11.
    Sangchoolie, B., Pattabiraman, K., Karlsson, J.: One bit is (not) enough: an empirical study of the impact of single and multiple bit-flip errors. In: Proceedings of 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 97–108, June 2017Google Scholar
  12. 12.
    Sierawski, B.D., et al.: Effects of scaling on muon-induced soft errors. In: 2011 IEEE International Reliability Physics Symposium (IRPS), pp. 3C.3.1–3C.3.6. IEEE (2011)Google Scholar
  13. 13.
    Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW: exposing the perils of security-oblivious energy management. In: 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, pp. 1057–1074. USENIX Association (2017). ISBN 978-1-931971-40-9Google Scholar
  14. 14.
    Vankeirsbilck, J., Penneman, N., Hallez, H., Boydens, J.: Random additive signature monitoring for control flow error detection. IEEE Trans. Reliab. 66(4), 1178–1192 (2017)CrossRefGoogle Scholar
  15. 15.
    Vankeirsbilck, J., Thati, V.B., Waes, J.V., Hallez, H., Boydens, J.: Control flow aware software-implemented fault injection for embedded CPUs. In: Proceedings of XXVI International Scientific Conference on Electronics (ET), pp. 1–4, September 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceKU LeuvenBruggeBelgium
  2. 2.Televic Healthcare NVIzegemBelgium

Personalised recommendations