Skip to main content

Resources for Modeling in Computational Neuroscience

  • Chapter
  • First Online:
Book cover Hippocampal Microcircuits

Abstract

Computational models of the nervous system help researchers discover principles of brain operation and form/function relationships. They can provide a framework for understanding empirical data and serve as an experimental platform to test concepts and intuitions. In practice, the effective use of theoretical, computational, and information theoretic approaches requires an ongoing cycle of experiments, data analysis, modeling studies, and model-generated predictions that are tested by further empirical work. This cycle requires that computational scientists be able to build on the work of others. In this chapter, we provide an overview of simulation tools and resources for creating computational models of hippocampal function. First, we outline some of the most widely used software applications for simulating models at various levels of biological detail. We also describe resources that aid in reproducibility by allowing for model sharing and reuse, for portability of models across simulation platforms, and for validation of models against experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251. https://doi.org/10.1523/JNEUROSCI.2055-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6:30. https://doi.org/10.3389/fninf.2012.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011) Cython: the best of both worlds. Comput Sci Eng 13:31–39

    Article  Google Scholar 

  • Birgiolas J, Dietrich SW, Crook S, Rajadesingan A, Zhang C, Penchala SV, Addepalli V (2015) Ontology-assisted keyword search for NeuroML models. ACM, New York, p 37

    Google Scholar 

  • Bota M, Dong H-W, Swanson LW (2005) Brain architecture management system. Neuroinformatics 3:15–47. https://doi.org/10.1385/NI:3:1:015

    Article  PubMed  Google Scholar 

  • Brent RP (2013) Algorithms for minimization without derivatives. Courier Corporation, North Chelmsford

    Google Scholar 

  • Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Cachat J, Bandrowski A, Grethe JS, Gupta A, Astakhov V, Imam F, Larson SD, Martone ME (2012) A survey of the neuroscience resource landscape: perspectives from the neuroscience information framework. Int Rev Neurobiol 103:39–68. https://doi.org/10.1016/B978-0-12-388408-4.00003-4

    Article  PubMed  Google Scholar 

  • Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol 6:e1000886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA (2014) LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2. Front Neuroinform 8:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Carnevale T (2007) Neuron simulation environment. Scholarpedia 2:1378

    Article  Google Scholar 

  • Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong TM, Feldman V (2013) Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: Proceedings of the international joint conference on neural networks (IJCNN 2013). IEEE, Piscataway, pp 1–10

    Google Scholar 

  • Cassidy AS, Alvarez-Icaza R, Akopyan F, Sawada J, Arthur JV, Merolla PA, Datta P, Tallada MG, Taba B, Andreopoulos A (2014) Real-time scalable cortical computing at 46 giga-synaptic OPS/watt with. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE, Piscataway, pp 27–38

    Chapter  Google Scholar 

  • Cheung K, Schultz SR, Luk W (2012) A large-scale spiking neural network accelerator for FPGA systems. In: Proceedings of the 22nd international conference on artificial neural networks and machine learning – volume part I. Springer, Berlin/Heidelberg, pp 113–120

    Google Scholar 

  • Crasto CJ, Marenco LN, Liu N, Morse TM, Cheung K-H, Lai PC, Bahl G, Masiar P, Lam HYK, Lim E, Chen H, Nadkarni P, Migliore M, Miller PL, Shepherd GM (2007) SenseLab: new developments in disseminating neuroscience information. Brief Bioinform 8:150–162. https://doi.org/10.1093/bib/bbm018

    Article  CAS  PubMed  Google Scholar 

  • Crook SM, Dietrich S (2014) Model exchange with the NeuroML model database. BMC Neurosci 15:1

    Article  Google Scholar 

  • Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5:96–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalcín L, Paz R, Storti M (2005) MPI for Python. J Parallel Distrib Comput 65:1108–1115

    Article  Google Scholar 

  • Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2007) PyNN: a common Interface for neuronal network simulators. Front Neuroinform 2:11–11

    Google Scholar 

  • Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg Ö (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8:43–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudani N, Ray S, George S, Bhalla US (2009) Multiscale modeling and interoperability in MOOSE. BMC Neurosci 10:1

    Article  Google Scholar 

  • Dura-Bernal S, Suter BA, Neymotin SA, Kerr CC, Quintana A, Gleeson P, Shepherd GMG, Lytton W (2016) NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. BMC Neurosci 17:P105

    Google Scholar 

  • Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Tang C, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338:1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2007) PyNEST: a convenient Interface to the NEST simulator. Front Neuroinform 2:12–12

    Google Scholar 

  • Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia

    Book  Google Scholar 

  • Fidjeland AK, Roesch EB, Shanahan MP, Luk W (2009) NeMo: a platform for neural modelling of spiking neurons using GPUs. In: 20th IEEE international conference on application-specific systems, architectures and processors, 2009. IEEE, Piscataway, pp 137–144

    Chapter  Google Scholar 

  • Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013) Overview of the SpiNNaker system architecture. IEEE Trans Comput 62:2454–2467

    Article  Google Scholar 

  • Gewaltig M-O, Diesmann M (2007) NEST (neural simulation tool). Scholarpedia 2:1430

    Article  Google Scholar 

  • Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:e1000815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleeson P, Silver A, Cantarelli M (2015) Open source brain. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York, pp 2153–2156

    Google Scholar 

  • Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. BMC Neurosci 9:1–2

    Article  CAS  Google Scholar 

  • Goodman DFM, Brette R (2009) The brian simulator. Front Neurosci 3:26

    Article  Google Scholar 

  • Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. BMC Syst Biol 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17:7–11. https://doi.org/10.1023/B:JCNS.0000023869.22017.2e

    Article  PubMed  PubMed Central  Google Scholar 

  • Hines ML, Davison AP, Muller E (2008) NEURON and Python. Front Neuroinform 3:1–1

    Google Scholar 

  • Idili G, Cantarelli M, Buibas M, Busbice T, Coggan J, Grove C, Khayrulin S, Palyanov A, Larson S (2011) Managing complexity in multi-algorithm. In: Multi-scale Biological simulations: an integrated software engineering and Neuroinformatics approach. Front Neuroinform. Conference Abstract: 4th INCF Congress of Neuroinformatics. https://doi.org/10.3389/conf.fninf.2011.08.00112

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070. https://doi.org/10.1109/TNN.2004.832719

    Article  PubMed  Google Scholar 

  • Johnson SG (2014) The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt

  • Jones E, Oliphant T, Peterson P (2001) SciPy: Open source scientific tools for Python. http://www.scipy.org

  • Khan MM, Lester DR, Plana LA, Rast A, Jin X, Painkras E, Furber SB (2008) SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In: Proceedings of the international joint conference on neural networks (IJCNN 2008). IEEE, Piscataway, pp 2849–2856

    Google Scholar 

  • Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M (2014) Spiking network simulation code for petascale computers. Front Neuroinform 8:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Laird AR, Lancaster JJ, Fox PT (2005) BrainMap. Neuroinformatics 3:65–77. https://doi.org/10.1385/NI:3:1:065

    Article  PubMed  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  • Larson SD, Martone ME (2013) NeuroLex.org: an online framework for neuroscience knowledge. Front. Neuroinformatics 7:18. https://doi.org/10.3389/fninf.2013.00018

    Article  Google Scholar 

  • Marenco L, Wang R, Shepherd GM, Miller PL (2010) The NIF DISCO framework: facilitating automated integration of neuroscience content on the web. Neuroinformatics 8:101–112. https://doi.org/10.1007/s12021-010-9068-8

    Article  PubMed  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160. https://doi.org/10.1038/nrn1848

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J-D, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril J-P, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé J-V, Magalhães BRC, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J-R, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492. https://doi.org/10.1016/j.cell.2015.09.029

    Article  CAS  PubMed  Google Scholar 

  • Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, Wong M, Santini S, Ellisman MH (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics 1:379–395. https://doi.org/10.1385/NI:1:4:379

    Article  PubMed  Google Scholar 

  • Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–673

    Article  CAS  PubMed  Google Scholar 

  • Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753. https://doi.org/10.1093/nar/gkp889

    Article  CAS  PubMed  Google Scholar 

  • Omar C, Aldrich J, Gerkin RC (2014) Collaborative infrastructure for test-driven scientific model validation. In: Companion proceedings of the 36th international conference on software engineering. ACM, New York, pp 524–527

    Google Scholar 

  • Pecevski D, Natschläger T, Schuch K (2009) PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinform 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng 9:21–29

    Article  Google Scholar 

  • Ranjan R, Khazen G, Gambazzi L, Ramaswamy S, Hill SL, Schürmann F, Markram H (2011) Channelpedia: an integrative and interactive database for ion channels. Front Neuroinform 5:36. https://doi.org/10.3389/fninf.2011.00036

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386

    Article  CAS  PubMed  Google Scholar 

  • Sarma GP, Jacobs TW, Watts MD, Ghayoomie SV, Larson SD, Gerkin RC (2016) Unit testing, model validation, and biological simulation. F1000Research 5:1946. https://doi.org/10.12688/f1000research.9315.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Schemmel J, Briiderle D, Griibl A, Hock M, Meier K, Millner S (2010) A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS). IEEE, Piscataway, pp 1947–1950

    Chapter  Google Scholar 

  • Schemmel J, Grübl A, Hartmann S, Kononov A, Mayr C, Meier K, Millner S, Partzsch J, Schiefer S, Scholze S (2012) Live demonstration: a scaled-down version of the brainscales wafer-scale neuromorphic system. In: Proceedings of 2012 IEEE international symposium on circuits and systems (ISCAS). IEEE, Piscataway, pp 702–702

    Chapter  Google Scholar 

  • Stewart TC, Tripp B, Eliasmith C (2009) Python scripting in the Nengo simulator. Front Neuroinform 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–127

    Google Scholar 

  • Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, Currie M, Cantarelli M, Idili G, Larson S (2014) OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front Comput Neurosci 8:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Teeters JL, Sommer FT (2009) CRCNS.ORG: a repository of high-quality data sets and tools for computational neuroscience. BMC Neurosci 10:1–1. https://doi.org/10.1186/1471-2202-10-S1-S6

    Article  Google Scholar 

  • Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A, Denisov G, Siegle JH, Olsen SR, Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G, Koch C, Meister M, Svoboda K, Sommer FT (2015) Neurodata without Borders: creating a common data format for neurophysiology. Neuron 88:629–634. https://doi.org/10.1016/j.neuron.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  • Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC (2014) NeuroElectro: a window to the world’s neuron electrophysiology data. Front Neuroinform 8:40. https://doi.org/10.3389/fninf.2014.00040

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  PubMed  Google Scholar 

  • Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. BMC Neurosci 8:1

    Article  CAS  Google Scholar 

  • Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241–251

    Article  PubMed  Google Scholar 

  • Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J-D, Muller EB, Schürmann F, Segev I, Markram H (2016) BluePyOpt: leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front Neuroinform 10. https://doi.org/10.3389/fninf.2016.00017

  • Vella M, Cannon RC, Crook S, Davison AP, Ganapathy G, Robinson HPC, Silver RA, Gleeson P (2014) libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience. Front Neuroinform 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA (2015) Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. eLife. https://doi.org/10.7554/eLife.09960

  • Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: a system for simulating neural networks. In: Touretzky D (ed) Advances in neural information processing systems, vol 1. Morgan Kaufmann Publishers Inc, San Francisco, pp 485–492

    Google Scholar 

  • Yavuz E, Turner J, Nowotny T (2016) GeNN: a code generation framework for accelerated brain simulations. Sci Rep 6:18854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institute on Deafness and Other Communication Disorders and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award numbers 1F31DC016811 to JB and R01MH106674 to SMC and R01EB021711 to RCG. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Gerkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Birgiolas, J., Crook, S.M., Gerkin, R.C. (2018). Resources for Modeling in Computational Neuroscience. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_24

Download citation

Publish with us

Policies and ethics