Skip to main content

A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus

  • Chapter
  • First Online:
Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

The model is a conductance-based neural network model of the brain circuit thought to be involved in pattern separation during hippocampal memory acquisition: the dentate gyrus (DG). In this chapter we explain the concepts of pattern separation and how it was tested in our model. Our hypothesis is that experimentally constrained homeostatic adaptations of intrinsic neuronal properties can restore the pattern separation ability of the DG network, if it was lost during epileptic excitability (Stegen et al. 2009; Young et al. 2009; Yim et al. 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, Levelt C, Sablitzky F, Anderson PN, Lieberman AR, Verhaagen J (2004) Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61:187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alme CB, Buzzetti RA, Marrone DF, Leutgeb JK, Chawla MK, Schaner MJ, Bohanick JD, Khoboko T, Leutgeb S, Moser EI, Moser MB, McNaughton BL, Barnes CA (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Almog M, Korngreen A (2016) Is realistic neuronal modeling realistic? J Neurophysiol 116:2180–2209

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris RG, Amaral DG, Bliss T, O'Keefe J (eds) The hippocampus book. Oxford University Press, Oxford, New York, pp 37–114

    Google Scholar 

  • Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215–235

    Article  CAS  PubMed  Google Scholar 

  • Aradi I, Soltesz I (2002) Modulation of network behaviour by changes in variance in interneuronal properties. J Physiol 538:227–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artinian J, Peret A, Mircheva Y, Marti G, Crepel V (2015) Impaired neuronal operation through aberrant intrinsic plasticity in epilepsy. Ann Neurol 77:592–606

    Article  CAS  PubMed  Google Scholar 

  • Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker S (2005) A computational principle for hippocampal learning and neurogenesis. Hippocampus 15:722–738

    Article  PubMed  Google Scholar 

  • Bernacchia A, Wang XJ (2013) Decorrelation by recurrent inhibition in heterogeneous neural circuits. Neural Comput 25:1732–1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischofberger J (2007) Young and excitable: new neurons in memory networks. Nat Neurosci 10:273–275

    Article  CAS  PubMed  Google Scholar 

  • Bonilha L, Yasuda CL, Rorden C, Li LM, Tedeschi H, de Oliveira E, Cendes F (2007) Does resection of the medial temporal lobe improve the outcome of temporal lobe epilepsy surgery? Epilepsia 48:571–578

    Article  PubMed  Google Scholar 

  • Brette R et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckmaster PS (2012) Mossy fiber sprouting in the dentate gyrus. Jasper’s basic mechanisms of the epilepsies [Internet]

    Google Scholar 

  • Carnevale NT, Hines ML (2008) The NEURON simulation environment in epilepsy research. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, London, pp 18–33

    Chapter  Google Scholar 

  • Cashdollar N, Malecki U, Rugg-Gunn FJ, Duncan JS, Lavie N, Duzel E (2009) Hippocampus-dependent and -independent theta-networks of active maintenance. Proc Natl Acad Sci U S A 106:20493–20498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of DG granule cells contribute to pattern separation by controlling sparsity. Hippocampus 27:89–110

    Google Scholar 

  • Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK, Worley PF, McNaughton BL, Barnes CA (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15:579–586

    Article  CAS  PubMed  Google Scholar 

  • Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng JK, Huang YY, Chiu CD, Lien CC (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Lorincz A, Buzsaki G (2000) Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10:457–465

    Article  CAS  PubMed  Google Scholar 

  • Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coras R, Pauli E, Li J, Schwarz M, Rossler K, Buchfelder M, Hamer H, Stefan H, Blumcke I (2014) Differential influence of hippocampal subfields to memory formation: insights from patients with temporal pole epilepsy. Brain 137:1945

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge/London

    Google Scholar 

  • de Almeida L, Idiart M, Lisman JE (2009) The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J Neurosci 29:7504–7512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Schutter E (2014) The dangers of plug-and-play simulation using shared models. Neuroinformatics 12:227–228

    PubMed  Google Scholar 

  • Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:e00312

    Article  PubMed  PubMed Central  Google Scholar 

  • Dery N, Pilgrim M, Gibala M, Gillen J, Wojtowicz JM, Macqueen G, Becker S (2013) Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front Neurosci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, Jain S, Scharfman HE, Hen R (2016) Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 26:763–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566–1587

    Article  PubMed  Google Scholar 

  • Ewell LA, Jones MV (2010) Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci 30:12597–12607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    Article  CAS  PubMed  Google Scholar 

  • Finnegan R, Becker S (2015) Neurogenesis paradoxically decreases both pattern separation and memory interference. Front Syst Neurosci 9:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzius M, Sprekeler H, Wiskott L (2007) Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Comput Biol 3:e166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibson WG, Robinson J, Bennett MR (1991) Probabilistic secretion of quanta in the central nervous system: granule cell synaptic control of pattern separation and activity regulation. Philos Trans R Soc Lond Ser B Biol Sci 332:199–220

    Article  CAS  Google Scholar 

  • Gilbert PE, Kesner RP (2002) The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiol Learn Mem 77:338–353

    Article  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2006) The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behav Brain Res 169:142–149

    Article  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11:626–636

    Article  CAS  PubMed  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122:16–26

    Article  PubMed  Google Scholar 

  • Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70

    Article  CAS  PubMed  Google Scholar 

  • Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273–280

    CAS  PubMed  Google Scholar 

  • Hendrickson PJ, Yu GJ, Song D, Berger TW (2016) A million-plus neuron model of the hippocampal dentate gyrus: critical role for topography in determining spatiotemporal network dynamics. IEEE Trans Biomed Eng 63:199–209

    Article  PubMed  Google Scholar 

  • Heng K, Haney MM, Buckmaster PS (2013) High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54:1535–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  CAS  PubMed  Google Scholar 

  • Hoffman EP (1995) Voltage-gated ion channelopathies: inherited disorders caused by abnormal sodium, chloride, and calcium regulation in skeletal muscle. Annu Rev Med 46:431–441

    Article  CAS  PubMed  Google Scholar 

  • Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97:2394–2409

    Article  CAS  PubMed  Google Scholar 

  • Hsu D (2007) The dentate gyrus as a filter or gate: a look back and a look ahead. Prog Brain Res 163:601–613

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246

    Article  CAS  PubMed  Google Scholar 

  • Jaffe DB, Ross WN, Lisman JE, Lasser-Ross N, Miyakawa H, Johnston D (1994) A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J Neurophysiol 71:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76:1189–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RS (1993) Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci 16:58–64

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182

    Article  CAS  PubMed  Google Scholar 

  • Kay AR, Wong RK (1987) Calcium current activation kinetics in isolated pyramidal neurones of the Ca1 region of the mature guinea-pig hippocampus. J Physiol 392:603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP (2013) An analysis of the dentate gyrus function. Behav Brain Res 254:1–7

    Article  PubMed  Google Scholar 

  • Kesner RP, Gilbert PE, Wallenstein GV (2000) Testing neural network models of memory with behavioral experiments. Curr Opin Neurobiol 10:260–265

    Article  CAS  PubMed  Google Scholar 

  • Kirchheim F, Tinnes S, Haas CA, Stegen M, Wolfart J (2013) Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front Cell Neurosci 7:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi M, Wen X, Buckmaster PS (2003) Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 23:8471–8479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Köhling R, Wolfart J (2016) Potassium channels in epilepsy. Cold Spring Harb Perspect Med 6:a022871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krook-Magnuson E, Armstrong C, Bui A, Lew S, Oijala M, Soltesz I (2015) In vivo evaluation of the dentate gate theory in epilepsy. J Physiol 593:2379–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullmann DM, Waxman SG (2010) Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol 588:1823–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence JJ, McBain CJ (2003) Interneuron diversity series: containing the detonation--feedforward inhibition in the CA3 hippocampus. Trends Neurosci 26:631–640

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966

    Article  CAS  PubMed  Google Scholar 

  • Lisman JE, Talamini LM, Raffone A (2005) Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Netw 18:1191–1201

    Article  PubMed  Google Scholar 

  • Lothman EW, Stringer JL, Bertram EH (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl 7:301–313

    CAS  PubMed  Google Scholar 

  • Ly C (2015) Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity. J Comput Neurosci 39:311–327

    Article  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Burgin A, Mongiat LA, Pardi MB, Schinder AF (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335:1238–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci 262:23–81

    Article  CAS  Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Morris J (1987) Hippocampal synaptic enhancement and information storage within in a distributed memory system. Trends Neurosci 10:408–414

    Article  Google Scholar 

  • McNaughton BL, Barnes CA, Andersen P (1981) Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro. J Neurophysiol 46:952–966

    Article  CAS  PubMed  Google Scholar 

  • Mehranfard N, Gholamipour-Badie H, Motamedi F, Janahmadi M, Naderi N (2014) Occurrence of two types of granule cells with different excitability in rat dentate gyrus granule cell layer following pilocarpine-induced status epilepticus. Annu Res Rev Biol 4:3707–3715

    Article  Google Scholar 

  • Meier JC, Semtner M, Wolfart J (2015) Homeostasis of neuronal excitability via synaptic and intrinsic inhibitory mechanisms. In: Boison D, Masino SA (eds) Homeostatic control of brain function. Oxford University Press, Oxford

    Google Scholar 

  • Mejias JF, Longtin A (2012) Optimal heterogeneity for coding in spiking neural networks. Phys Rev Lett 108:228102

    Article  CAS  PubMed  Google Scholar 

  • Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157–1168

    Article  CAS  PubMed  Google Scholar 

  • Mittenthal JE (1974) Reliability of pattern separation by the cerebellar mossy fiber--granule cell system. Kybernetik 16:93–101

    Article  CAS  PubMed  Google Scholar 

  • Moczydlowski E, Latorre R (1983) Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82:511–542

    Article  CAS  PubMed  Google Scholar 

  • Mongiat LA, Esposito MS, Lombardi G, Schinder AF (2009) Reliable activation of immature neurons in the adult hippocampus. PLoS One 4:e5320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179–6184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639–658

    Article  PubMed  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 31:69–89

    Article  CAS  PubMed  Google Scholar 

  • Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19:321–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21:1190–1215

    Article  PubMed  Google Scholar 

  • Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa K (2017) Dentate mossy cell and pattern separation. Neuron 93:465–467

    Article  CAS  PubMed  Google Scholar 

  • Numann RE, Wadman WJ, Wong RK (1987) Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 393:331–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682

    Article  PubMed  Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan K, Urban NN (2010) Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat Neurosci 13:1276–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 27:14012–14022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Hauer B, Mihalek RM, Homanics GE, Sieghart W, Olsen RW, Houser CR (2002) GABA(A) receptor changes in delta subunit-deficient mice: altered expression of alpha4 and gamma2 subunits in the forebrain. J Comp Neurol 446:179–197

    Article  CAS  PubMed  Google Scholar 

  • Potvin O, Dore FY, Goulet S (2009) Lesions of the dorsal subiculum and the dorsal hippocampus impaired pattern separation in a task using distinct and overlapping visual stimuli. Neurobiol Learn Mem 91:287–297

    Article  PubMed  Google Scholar 

  • Rangel LM, Quinn LK, Chiba AA, Gage FH, Aimone JB (2013) A hypothesis for temporal coding of young and mature granule cells. Front Neurosci 7:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET (2010) A computational theory of episodic memory formation in the hippocampus. Behav Brain Res 215:180–196

    Article  PubMed  Google Scholar 

  • Sahay A, Scobie KN, Hill AS, OCarroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437–453

    Article  PubMed  Google Scholar 

  • Santoro A (2013) Reassessing pattern separation in the dentate gyrus. Front Behav Neurosci 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE, Sollas AL, Berger RE, Goodman JH (2003) Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 90:2536–2547

    Article  PubMed  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    Article  CAS  PubMed  Google Scholar 

  • Schneider CJ, Bezaire M, Soltesz I (2012) Toward a full-scale computational model of the rat dentate gyrus. Front Neural Circuits 6:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider CJ, Cuntz H, Soltesz I (2014) Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations. PLoS Comput Biol 10:e1003921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone ME, Carnevale NT (2013) Introducing the neuroscience gateway. In: CEUR workshop proceedings, CEUR-WSorg, 2013, vol 993

    Google Scholar 

  • Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227

    Article  PubMed  Google Scholar 

  • Spencer SS, Spencer DD (1994) Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35:721–727

    Article  CAS  PubMed  Google Scholar 

  • Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179

    Article  CAS  PubMed  Google Scholar 

  • Stegen M, Young CC, Haas CA, Zentner J, Wolfart J (2009) Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon's horn sclerosis. Epilepsia 50:646–653

    Article  PubMed  Google Scholar 

  • Stegen M, Kirchheim F, Hanuschkin A, Staszewski O, Veh RW, Wolfart J (2012) Adaptive intrinsic plasticity in human dentate gyrus granule cells during temporal lobe epilepsy. Cereb Cortex 22:2087–2101

    Article  PubMed  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki F, Makiura Y, Guilhem D, Sorensen JC, Onteniente B (1997) Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice. Exp Neurol 145:203–213

    Article  CAS  PubMed  Google Scholar 

  • Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5:1016–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejada J, Roque AC (2014) Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells. EpilepsyBehav: E&B 38:63–70

    Google Scholar 

  • Tejada J, Arisi GM, Garcia-Cairasco N, Roque AC (2012) Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PLoS One 7:e40726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejada J, Costa KM, Bertti P, Garcia-Cairasco N (2013) The epilepsies: complex challenges needing complex solutions. Epilepsy Behav: E&B 26:212–228

    Article  Google Scholar 

  • Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels. Arch Neurol 66:1225–1232

    Article  PubMed  Google Scholar 

  • Thomas EA, Reid CA, Petrou S (2010) Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia 51:136–145

    Article  PubMed  Google Scholar 

  • Torioka T (1978) Pattern separability and the effect of the number of connections in a random neural net with inhibitory connections. Biol Cybern 31:27–35

    Article  CAS  PubMed  Google Scholar 

  • Torioka T, Ikeda N (1988) Pattern separating functioning of two-layered random nerve nets with feedforward inhibitory connections. IEEE Trans Syst Man Cybern 18:358–366

    Article  Google Scholar 

  • Torioka T, Ikeda N (1990) Consideration on pattern-separating function in a generalized random-nerve net consisting of two layers. IEEE Trans Syst Man Cybern 20:619–627

    Article  Google Scholar 

  • Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    Article  CAS  PubMed  Google Scholar 

  • Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–199

    Article  CAS  PubMed  Google Scholar 

  • Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, Abrous DN (2012) Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22:292–298

    Article  PubMed  Google Scholar 

  • Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276

    Article  CAS  PubMed  Google Scholar 

  • Waxman SG (2001) Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci 2:652–659

    Article  CAS  PubMed  Google Scholar 

  • Winkels R, Jedlicka P, Weise FK, Schultz C, Deller T, Schwarzacher SW (2009) Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo. Hippocampus 19:677–686

    Article  CAS  PubMed  Google Scholar 

  • Wolfart J, Laker D (2015) Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 6:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767

    Article  CAS  PubMed  Google Scholar 

  • Yim MY, Aertsen A, Rotter S (2013) Impact of intrinsic biophysical diversity on the activity of spiking neurons. Phys Rev E 87:1–5

    Article  CAS  Google Scholar 

  • Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297–308

    Article  PubMed  Google Scholar 

  • Young CC, Stegen M, Bernard R, Muller M, Bischofberger J, Veh RW, Haas CA, Wolfart J (2009) Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 587:4213–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen GL, Durand D (1991) Reconstruction of hippocampal granule cell electrophysiology by computer simulation. Neuroscience 41:411–423

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wei W, Mody I, Houser CR (2007) Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520–7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) to JW (SFB780/C2, WO1563/1-1). AH was supported by the Bernstein Award Computational Neuroscience (to Ilka Diester).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Wolfart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanuschkin, A., Yim, M.Y., Wolfart, J. (2018). A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_23

Download citation

Publish with us

Policies and ethics