Skip to main content

Genome-Wide Associations of Schizophrenia Studied with Computer Simulation

  • Chapter
  • First Online:
Hippocampal Microcircuits

Abstract

A recent genome-wide association study (GWAS) demonstrated 108 association loci that are associated with development of schizophrenia (Schizophrenia Working Group, 2014). These are just the sites that can be implicated using the statistical power conferred by current data. It is expected that many more sites will be uncovered as new studies use larger numbers of cases and controls. The number of likely associated loci is uncertain, but one estimate suggests it may be in the thousands (International Schizophrenia Consortium). For any given patient, only a small subset of these locations will show mutations. The clinical pathway hypothesis for polygenic diseases predicts that the various sites of damage associated with a given disease reflect sets of mutationally damaged genes that together produce the disease (we will use the term clinical pathway so as to distinguish it from the traditional definition of a pathway as a biochemical sequence) (Sullivan, 2012). What is a clinical pathway? This term remains weakly defined and will differ between diseases and even within a single disease. For example, multiple clinical pathways in schizophrenia may well involve (1) developmental sequences, (2) intracellular cascade sequences such as second-messenger cascades in neurons, (3) genetic activation sequences or RNA transcriptional control sequences, (4) immunological and scavenging pathways (e.g., synapse and cell elimination in schizophrenia Sullivan 2012), and (5) pathways of dynamical physiological interactions that together provide physiological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accili EA, Proenza C, Baruscotti M, DiFrancesco D (2002) From funny current to HCN channels: 20 years of excitation. Physiology 17(1):32–37

    Article  CAS  Google Scholar 

  • Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 574(1):229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender RA, Brewster A, Santoro B, Ludwig A, Hofmann F, Biel M, Baram TZ et al (2001) Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1–4 suggests evolving roles in the developing rat hippocampus. Neuroscience 106(4):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15(3):509–538

    Article  PubMed  Google Scholar 

  • Brody CD (1999) Correlations without synchrony. Neural Comput 11(7):1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117(5):491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chover J, Haberly L, Lytton WW (2001) Alternating dominance of NMDA and AMPA for learning and recall: a computer model. Neuroreport 12:2503–2507

    Article  CAS  PubMed  Google Scholar 

  • Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335

    Article  CAS  PubMed  Google Scholar 

  • Cutsuridis V, Graham B, Cobb S, Vida I (2010) Hippocampal microcircuits: a computational modeler’s resource book, vol 5. Springer, New York

    Book  Google Scholar 

  • de Haan W, van der Flier WM, Wang H, Van Mieghem PFA, Scheltens P, Stam CJ (2012) Disruption of functional brain networks in alzheimer’s disease: what can we learn from graph spectral analysis of resting-state magnetoencephalography? Brain Connect 2(2):45–55

    Article  PubMed  Google Scholar 

  • Dumenko VN (2002) Functional significance of high-frequency components of brain electrical activity in the processes of gestalt formation. Zh Vyssh Nerv Deiat Im I P Pavlova 52:539–550

    CAS  PubMed  Google Scholar 

  • Dyhrfjeld-Johnsen J, Morgan RJ, Földy C, Soltesz I (2008) Upregulated H-Current in hyperexcitable CA1 dendrites after febrile seizures. Front Cell Neurosci 2

    Google Scholar 

  • Dyhrfjeld-Johnsen J, Morgan RJ, Soltesz I (2009) Double trouble? potential for hyperexcitability following both channelopathic up-and downregulation of Ih in epilepsy. Front Neurosci 3(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Schizophrenia Consortium et al, Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

    Google Scholar 

  • Franck N, Duboc C, Sundby C, Amado I, Wykes T, Demily C, Launay C, Le Roy V, Bloch P, Willard D et al (2013) Specific vs general cognitive remediation for executive functioning in schizophrenia: a multicenter randomized trial. Schizophr Res 147:68–74

    Article  PubMed  Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    Article  CAS  PubMed  Google Scholar 

  • Schizophrenia Working Group (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  CAS  Google Scholar 

  • Hagiwara N, Irisawa H (1989) Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J Physiol 409(1):121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo M (2005) Expecting the unexpected: modeling of neuromodulation. Neuron 46:526–528

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol 67:1222–1229

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Oribe N, Kanba S, Onitsuka T, Nestor PG, Spencer KM (2015) Spontaneous gamma activity in schizophrenia. JAMA Psychiat 72:813–821

    Article  Google Scholar 

  • Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiat

    Google Scholar 

  • Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ (2010) Ketamine modulates theta and gamma oscillations. J Cogn Neurosci 22(7):1452–1464

    Article  PubMed  Google Scholar 

  • Lee H, Dvorak D, Fenton AA (2014) Targeting neural synchrony deficits is sufficient to improve cognition in a schizophrenia-related neurodevelopmental model. Front Psychiat 5:15

    Google Scholar 

  • Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Raghavachari S (2006) A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci Signal

    Google Scholar 

  • Lisman JE, Idiart MAP (1995) Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267:1512–1515

    Article  CAS  PubMed  Google Scholar 

  • Lytton WW (2008) Computer modelling of epilepsy. Nat Rev Neurosci 9:626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66(3):1059–1079

    Article  CAS  PubMed  Google Scholar 

  • Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schürmann F, Hines ML (in press) Simulation neurotechnologies for advancing brain research: Parallelizing large networks in neuron. Neural Comput

    Google Scholar 

  • Moretti DV, Paternicò D, Binetti G, Zanetti O, Frisoni GB (2013) EEG upper/low alpha frequency power ratio relates to temporo-parietal brain atrophy and memory performances in mild cognitive impairment. Front Aging Neurosci 5:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Neymotin SA, Hilscher MM, Moulin TC, Skolnick Y, Lazarewicz MT, Lytton WW (2013) Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PLoS One 8:e76285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011a) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci 30(1):69–84

    Article  PubMed  Google Scholar 

  • Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011b) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci 31(32):11733–11743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neurosci 316(1):344–366

    Article  CAS  Google Scholar 

  • Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5(8):767–774

    Article  CAS  PubMed  Google Scholar 

  • Poolos NP, Bullis JB, Roth MK (2006) Modulation of h-channels in hippocampal pyramidal neurons by p38 mitogen-activated protein kinase. J Neurosci 26(30):7995–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro B, Baram TZ (2003) The multiple personalities of h-channels. Trends Neurosci 26(10):550–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar A, Bialas AR, Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M et al Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB (2007) A GLuR1-cGKII interaction regulates ampa receptor trafficking. Neuron 56:670–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. U Illinois Press, Urbana

    Google Scholar 

  • Silverstein SM, Hatashita-Wong M, Schenkel LS, Wilkniss S, Kovács I, Fehér A, Smith T, Goicochea C, Uhlhaas P, Carpiniello K, Savitz A (2006) Reduced top-down influences in contour detection in schizophrenia. Cogn Neuropsychiatry 11:112–132

    Article  PubMed  Google Scholar 

  • Sullivan PF (2012) Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat Med 18:210–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, Malaspina D, Owen MJ, Schultz S, Tsuang M et al (2013) Definition and description of schizophrenia in the DSM-5. Schizophr Res 150:3–10

    Article  PubMed  Google Scholar 

  • Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ (2007) On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Nat Acad Sci 104:13490–13495

    Article  CAS  PubMed  Google Scholar 

  • Tost H, Meyer-Lindenberg A (2012) Puzzling over schizophrenia: schizophrenia, social environment and the brain. Nat Med 18:211–213

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Silverstein SM (2005) Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull 131:618–632

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Linden DE, Singer W, Haenschel C, Lindner M, Maurer K, and Rodriguez E. (2006a) Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. J Neurosci 26:8168–8175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM (2006b) Perceptual grouping in disorganized schizophrenia. Psychiatry Res 145:105–117

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Phillips WA, Schenkel LS, Silverstein SM (2006c) Theory of mind and perceptual context-processing in schizophrenia. Cogn Neuropsychiatry 11:416–436

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Haenschel C, Nikolić D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34(5):927–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahl-Schott C, Biel M (2009) HCN channels: structure, cellular regulation and physiological function. Cel Mol Life Sci 66(3):470–494

    Article  CAS  Google Scholar 

  • Wang XJ (2002) Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J Neurophysiol 87(2):889–900

    Article  PubMed  Google Scholar 

  • Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16(20):6402–6413

    Article  CAS  PubMed  Google Scholar 

  • White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Nat Acad Sci 97(14):8128–8133

    Article  CAS  PubMed  Google Scholar 

  • Zemankovics R, Káli S, Paulsen O, Freund TF, N Hájos (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. J Physiol 588(12):2109–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong X, Krause S, Chen CC, J Krüger, Gruner C, Cao-Ehlker X, Fenske S, Wahl-Schott C, Biel M (2012) Regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity by cCMP. J Biol Chem 287(32):26506–26512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Neymotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neymotin, S.A., Kline, N.S., Sherif, M.A., Jung, J.Q., Kabariti, J.J., Lytton, W.W. (2018). Genome-Wide Associations of Schizophrenia Studied with Computer Simulation. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_21

Download citation

Publish with us

Policies and ethics