Skip to main content

A Model of Spatial Reach in LFP Recordings

  • Chapter
  • First Online:
Hippocampal Microcircuits

Abstract

The measurement of local field potentials (LFP), the low-frequency part of extracellularly recorded potentials, is one of the most commonly used methods for probing hippocampal and cortical activity in vivo. It offers the possibility to monitor the activity of many neurons close to the recording electrode simultaneously but has the limitation that it may be difficult to interpret and relate to the underlying neuronal activity. The recording electrode picks up activity from proximal neurons, but what about more distant neurons? An important piece of information for a correct interpretation of the LFP is to decide the size of the tissue that substantially contributes to the LFP, i.e., the reach of the LFP signal. In this chapter we present a simple model that describes how population geometry, spatial decay of single-cell LFP contributions, and correlation between LFP sources determine the relation between LFP amplitude and population size and use it to study the spatial reach of the LFP. The model can also be used to study different frequency bands of the LFP separately as well as the spatial decay outside the active neuronal population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal G, Stevenson IH, Berényi A, Mizuseki K, Buzsáki G, Sommer FT (2014) Spatially distributed local fields in the hippocampus encode rat position. Science 344(6184):626–630

    Article  CAS  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2006) Does the 1∕f frequency scaling of brain signals reflect self-organized critical states? Phys Rev Lett 97:118102

    Article  Google Scholar 

  • Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28(22):5696–5709

    Article  CAS  Google Scholar 

  • Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32(2):423–435

    Article  CAS  Google Scholar 

  • Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS (2008) Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci 2:2

    Article  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15(1):47–60

    Article  CAS  Google Scholar 

  • Brankack J, Stewart M, Fox SE (1993) Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res 615:310–327

    Article  CAS  Google Scholar 

  • Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340

    Article  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    Article  Google Scholar 

  • Buzsáki G, Anastassiou C, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  Google Scholar 

  • Einevoll GT, Lindén H, Tetzlaff T, Łeski S, Pettersen KH (2012) Local field potentials: biophysical origin and analysis. In: Quiroga QR, Panzeri S (eds) Principles of neural coding. Taylor & Francis

    Google Scholar 

  • Einevoll GT, Kayser C, Logothetis N, Panzeri, S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785

    Article  CAS  Google Scholar 

  • Fernandez-Ruiz A, Muñoz S, Sancho M, Makarova J, Makarov VA, Herreras O (2013) Cytoarchitectonic and dynamic origins of giant positive local field potentials in the dentate gyrus. J Neurosci 33(39):15518–15532

    Article  CAS  Google Scholar 

  • Herreras O, Makarova J, Makarov VA (2015) New uses of LFPs: pathway-specific threads obtained through spatial discrimination. Neuroscience 310:486–503

    Article  CAS  Google Scholar 

  • Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comp Neurol 6(2):169–184

    CAS  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72:847–858

    Article  CAS  Google Scholar 

  • Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41

    Article  CAS  Google Scholar 

  • Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49:433–445

    Article  CAS  Google Scholar 

  • Łeski S, Lindén H, Pettersen KH, Einevoll GT (2013) Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput Biol 9(7):e1003137

    Article  Google Scholar 

  • Lindén H, Pettersen KH, Einevoll GT (2010). Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comp Neurol 29(3):423–444

    Google Scholar 

  • Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72:859–872

    Article  Google Scholar 

  • Lindén H, Hagen E, Łeski S, Norheim ES, Pettersen KH, Einevoll GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform 7

    Google Scholar 

  • Liu J, Newsome WT (2006) Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J Neurosci 26(30):7779–7790

    Article  CAS  Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    Article  CAS  Google Scholar 

  • Maier N, Tejero-Cantero A, Dorrn AL, Winterer J, Beed PS, Morris G, Kempter R, Poulet JF, Leibold C, Schmitz D (2011) Coherent phasic excitation during hippocampal ripples. Neuron 72:137–152

    Article  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366

    Article  CAS  Google Scholar 

  • Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S (2011) Cortical dynamics during naturalistic sensory stimulations: experiments and models. J Physiol Paris 105(1–3):2–15

    Article  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100

    Article  CAS  Google Scholar 

  • Ness TV, Remme MWH, Einevoll GT (2015) Active subthreshold dendritic conductances shape the local field potential. arXiv 1512.04293

    Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain, 2nd edn. Oxford University Press, Inc., New York

    Book  Google Scholar 

  • Pettersen KH, Einevoll GT (2008) Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J 94(3):784–802

    Article  CAS  Google Scholar 

  • Pettersen KH, Lindén H, Dale AM, Einevoll GT (2012) Extracellular spikes and current-source density. In Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge

    Google Scholar 

  • Schomburg EW, Anastassiou CA, Buzsáki G, Koch C (2012) The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 32:11798–11811

    Article  CAS  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1112

    Article  CAS  Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100:2065–2069

    Article  CAS  Google Scholar 

  • Taxidis J, Anastassiou CA, Diba K, Koch C (2015) Local field potentials encode place cell ensemble activation during hippocampal sharp wave ripples. Neuron 87(3):590–604

    Article  CAS  Google Scholar 

  • Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M (2008) Dependence of neuronal correlations on filter characteristics and marginal spike-train statistics. Neural Comput 20(9):2133–2184

    Article  Google Scholar 

  • Xing D, Yeh C-I, Shapley RM (2009) Spatial spread of the local field potential and its laminar variation in visual cortex. J Neurosci 29:11540–11549

    Article  CAS  Google Scholar 

  • Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done with financial support from the Danish Council for Independent Research and FP7 Marie Curie Actions – COFUND (grant id: DFF – 1330-00226), the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 604102 (Human Brain Project, HBP) and grant agreement 269912 (BrainScaleS), the Helmholtz Association through the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” (SMHB), Jülich Aachen Research Alliance (JARA), and the Research Council of Norway (NFR, through ISP, NOTUR -NN4661K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Lindén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindén, H. et al. (2018). A Model of Spatial Reach in LFP Recordings. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-99103-0_13

Download citation

Publish with us

Policies and ethics