Skip to main content

Fetal and Neonatal Thyroid Physiology

  • Chapter
  • First Online:
Thyroid Disease and Reproduction
  • 990 Accesses

Abstract

Thyroid hormone is critical to fetal and neonatal neurodevelopment. The tight control of fetal exposure to thyroid hormone begins early in gestation, as the placental thyroid hormone transporters facilitate passage of maternal thyroxine into fetal blood. With the development of the fetal thyroid gland and gradual maturation of the hypothalamic pituitary thyroid axis, fetal production of TSH, T4, and T3 increases, culminating in a surge of these hormones soon after birth. However, a number of genetic, maternal, and environmental factors can disrupt this process and have serious impacts on neonatal health. In this chapter, we review thyroid embryology and discuss fetal and neonatal thyroid physiology as well as pathology. While much is understood, human thyroid function ontogenesis remains an area of active discovery. Further research will help define topics such as the exact role of T3 in cortical development and the genetics of congenital hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pop VJ, Kuijpens JL, van Baar AL, Verkerk G, van Son MM, de Vijlder JJ, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol. 1999;50(2):149–55.

    Article  CAS  Google Scholar 

  2. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341(8):549–55.

    Article  CAS  Google Scholar 

  3. DeLong GR, Leslie PW, Wang SH, Jiang XM, Zhang ML, Rakeman M, et al. Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. Lancet. 1997;350(9080):771–3.

    Article  CAS  Google Scholar 

  4. Besancon A, Beltrand J, Le Gac I, Luton D, Polak M. Management of neonates born to women with Graves' disease: a cohort study. Eur J Endocrinol. 2014;170(6):855–62.

    Article  CAS  Google Scholar 

  5. Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab. 2014;28(2):175–87.

    Article  CAS  Google Scholar 

  6. Fan X, Fu C, Shen Y, Li C, Luo S, Li Q, et al. Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism. Clin Chim Acta. 2017;468:76–80.

    Article  CAS  Google Scholar 

  7. Carre A, Stoupa A, Kariyawasam D, Gueriouz M, Ramond C, Monus T, et al. Mutations in BOREALIN cause thyroid dysgenesis. Hum Mol Genet. 2017;26(3):599–610.

    CAS  PubMed  Google Scholar 

  8. Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab. 2016;101(12):4521–31.

    Article  CAS  Google Scholar 

  9. LaFranchi SH. Screening preterm infants for congenital hypothyroidism: better the second time around. J Pediatr. 2014;164(6):1259–61.

    Article  Google Scholar 

  10. De Felice M, Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev. 2004;25(5):722–46.

    Article  Google Scholar 

  11. Fagman H, Nilsson M. Morphogenesis of the thyroid gland. Mol Cell Endocrinol. 2010;323(1):35–54.

    Article  CAS  Google Scholar 

  12. Maenhaut C, Christophe D, Vassart G, Dumont J, Roger PP, Opitz R. Ontogeny, anatomy, metabolism and physiology of the thyroid. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al. editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc; 2000-. 2015 Jul 15.

  13. Williams ED, Toyn CE, Harach HR. The ultimobranchial gland and congenital thyroid abnormalities in man. J Pathol. 1989;159(2):135–41.

    Article  CAS  Google Scholar 

  14. Vandernoot I, Sartelet H, Abu-Khudir R, Chanoine JP, Deladoey J. Evidence for calcitonin-producing cells in human lingual thyroids. J Clin Endocrinol Metab. 2012;97(3):951–6.

    Article  CAS  Google Scholar 

  15. Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M, et al. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A. 2002;99(24):15462–7.

    Article  CAS  Google Scholar 

  16. Bajoria R, Peek MJ, Fisk NM. Maternal-to-fetal transfer of thyrotropin-releasing hormone in vivo. Am J Obstet Gynecol. 1998;178(2):264–9.

    Article  CAS  Google Scholar 

  17. Bajoria R, Fisk NM. Permeability of human placenta and fetal membranes to thyrotropin-stimulating hormone in vitro. Pediatr Res. 1998;43(5):621–8.

    Article  CAS  Google Scholar 

  18. Loubiere LS, Vasilopoulou E, Bulmer JN, Taylor PM, Stieger B, Verrey F, et al. Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction. Placenta. 2010;31(4):295–304.

    Article  CAS  Google Scholar 

  19. Koopdonk-Kool JM, de Vijlder JJ, Veenboer GJ, Ris-Stalpers C, Kok JH, Vulsma T, et al. Type II and type III deiodinase activity in human placenta as a function of gestational age. J Clin Endocrinol Metab. 1996;81(6):2154–8.

    CAS  PubMed  Google Scholar 

  20. Mortimer RH, Landers KA, Balakrishnan B, Li H, Mitchell MD, Patel J, et al. Secretion and transfer of the thyroid hormone binding protein transthyretin by human placenta. Placenta. 2012;33(4):252–6.

    Article  CAS  Google Scholar 

  21. Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989;321(1):13–6.

    Article  CAS  Google Scholar 

  22. Mitchell AM, Manley SW, Morris JC, Powell KA, Bergert ER, Mortimer RH. Sodium iodide symporter (NIS) gene expression in human placenta. Placenta. 2001;22(2–3):256–8.

    Article  CAS  Google Scholar 

  23. Thilly CH, Delange F, Lagasse R, Bourdoux P, Ramioul L, Berquist H, et al. Fetal hypothyroidism and maternal thyroid status in severe endemic goiter. J Clin Endocrinol Metab. 1978;47(2):354–60.

    Article  CAS  Google Scholar 

  24. Thorpe-Beeston JG, Nicolaides KH, Felton CV, Butler J, McGregor AM. Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. N Engl J Med. 1991;324(8):532–6.

    Article  CAS  Google Scholar 

  25. Winters AJ, Eskay RL, Porter JC. Concentration and distribution of TRH and LRH in the human fetal brain. J Clin Endocrinol Metab. 1974;39(5):960–3.

    Article  CAS  Google Scholar 

  26. Leduque P, Aratan-Spire S, Czernichow P, Dubois PM. Ontogenesis of thyrotropin-releasing hormone in the human fetal pancreas. A combined radioimmunological and immunocytochemical study. J Clin Invest. 1986;78(4):1028–34.

    Article  CAS  Google Scholar 

  27. Shambaugh G 3rd, Kubek M, Wilber JF. Thyrotropin-releasing hormone activity in the human placenta. J Clin Endocrinol Metab. 1979;48(3):483–6.

    Article  CAS  Google Scholar 

  28. Vliet GV, Deladoëy J. Chapter 7 - Disorders of the thyroid in the newborn and infant. In: Sperling MA, editor. Pediatric Endocrinology. 4th ed. Philadelphia: Elsevier; 2014. p. 186–208.

    Google Scholar 

  29. Neary JT, Nakamura C, Davies IJ, Soodak M, Maloof F. Lower levels of thyrotropin-releasing hormone-degrading activity in human cord and in maternal sera than in the serum of euthyroid, nonpregnant adults. J Clin Invest. 1978;62(1):1–5.

    Article  CAS  Google Scholar 

  30. Thorpe-Beeston JG, Nicolaides KH, McGregor AM. Fetal thyroid function. Thyroid. 1992;2(3):207–17.

    Article  CAS  Google Scholar 

  31. LaFranchi SH. Thyroid physiology and screening in preterm infants. In: Hoppin A, editor. UpToDate. Waltham: UpToDate. Accessed on 28 Nov 2017.

    Google Scholar 

  32. Dentice M, Salvatore D. Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J Endocrinol. 2011;209(3):273–82.

    Article  CAS  Google Scholar 

  33. Stanley EL, Hume R, Visser TJ, Coughtrie MW. Differential expression of sulfotransferase enzymes involved in thyroid hormone metabolism during human placental development. J Clin Endocrinol Metab. 2001;86(12):5944–55.

    Article  CAS  Google Scholar 

  34. Kester MH, Martinez de Mena R, Obregon MJ, Marinkovic D, Howatson A, Visser TJ, et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab. 2004;89(7):3117–28.

    Article  CAS  Google Scholar 

  35. Ribault V, Castanet M, Bertrand AM, Guibourdenche J, Vuillard E, Luton D, et al. Experience with intraamniotic thyroxine treatment in nonimmune fetal goitrous hypothyroidism in 12 cases. J Clin Endocrinol Metab. 2009;94(10):3731–9.

    Article  CAS  Google Scholar 

  36. Guibourdenche J, Noel M, Chevenne D, Vuillard E, Volumenie JL, Polak M, et al. Biochemical investigation of foetal and neonatal thyroid function using the ACS-180SE analyser: clinical application. Ann Clin Biochem. 2001;38(Pt 5):520–6.

    Article  CAS  Google Scholar 

  37. Ballard PL, Ballard RA, Creasy RK, Padbury J, Polk DH, Bracken M, et al. Plasma thyroid hormones and prolactin in premature infants and their mothers after prenatal treatment with thyrotropin-releasing hormone. Pediatr Res. 1992;32(6):673–8.

    Article  CAS  Google Scholar 

  38. Kratzsch J, Pulzer F. Thyroid gland development and defects. Best Pract Res Clin Endocrinol Metab. 2008;22(1):57–75.

    Article  CAS  Google Scholar 

  39. Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology. 2008;149(12):6251–61.

    Article  CAS  Google Scholar 

  40. Landers K, Richard K. Traversing barriers - How thyroid hormones pass placental, blood-brain and blood-cerebrospinal fluid barriers. Mol Cell Endocrinol. 2017;458:22–8.

    Article  CAS  Google Scholar 

  41. Chan S, Kachilele S, McCabe CJ, Tannahill LA, Boelaert K, Gittoes NJ, et al. Early expression of thyroid hormone deiodinases and receptors in human fetal cerebral cortex. Brain Res Dev Brain Res. 2002;138(2):109–16.

    Article  CAS  Google Scholar 

  42. Guadano-Ferraz A, Obregon MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94(19):10391–6.

    Article  CAS  Google Scholar 

  43. Bernal J. Thyroid hormone regulated genes in cerebral cortex development. J Endocrinol. 2017;232(2):R83–97.

    Article  CAS  Google Scholar 

  44. Bernal J, Pekonen F. Ontogenesis of the nuclear 3,5,3′-triiodothyronine receptor in the human fetal brain. Endocrinology. 1984;114(2):677–9.

    Article  CAS  Google Scholar 

  45. Berbel P, Auso E, Garcia-Velasco JV, Molina ML, Camacho M. Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neuroscience. 2001;107(3):383–94.

    Article  CAS  Google Scholar 

  46. Bernal J. Thyroid hormones in brain development and function. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al. editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc; 2000-. 2015 Sept 2.

  47. Polak M, Luton D. Fetal thyroidology. Best Pract Res Clin Endocrinol Metab. 2014;28(2):161–73.

    Article  CAS  Google Scholar 

  48. Hall JA, Ribich S, Christoffolete MA, Simovic G, Correa-Medina M, Patti ME, et al. Absence of thyroid hormone activation during development underlies a permanent defect in adaptive thermogenesis. Endocrinology. 2010;151(9):4573–82.

    Article  CAS  Google Scholar 

  49. Wassner AJ, Brown RS. Hypothyroidism in the newborn period. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):449–54.

    Article  CAS  Google Scholar 

  50. Woo HC, Lizarda A, Tucker R, Mitchell ML, Vohr B, Oh W, et al. Congenital hypothyroidism with a delayed thyroid-stimulating hormone elevation in very premature infants: incidence and growth and developmental outcomes. J Pediatr. 2011;158(4):538–42.

    Article  CAS  Google Scholar 

  51. Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis. 2010;5:17.

    Article  Google Scholar 

  52. Delange F. Neonatal screening for congenital hypothyroidism: results and perspectives. Horm Res. 1997;48(2):51–61.

    Article  CAS  Google Scholar 

  53. LaFranchi SH. Hypothyroidism. Pediatr Clin N Am. 1979;26(1):33–51.

    Article  CAS  Google Scholar 

  54. Bhavani N. Transient congenital hypothyroidism. Indian J Endocr Metab. 2011;15(Suppl 2):S117–20.

    Article  CAS  Google Scholar 

  55. Frassetto F, Tourneur Martel F, Barjhoux CE, Villier C, Bot BL, Vincent F. Goiter in a newborn exposed to lithium in utero. Ann Pharmacother. 2002;36(11):1745–8.

    Article  Google Scholar 

  56. Koukkou EG, Roupas ND, Markou KB. Effect of excess iodine intake on thyroid on human health. Minerva Med. 2017;108(2):136–46.

    PubMed  Google Scholar 

  57. Leung AM, Braverman LE. Consequences of excess iodine. Nat Rev Endocrinol. 2014;10(3):136–42.

    Article  CAS  Google Scholar 

  58. Segni M. Disorders of the thyroid gland in infancy, childhood and adolescence. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al. editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc; 2000–2017 Mar 18.

    Google Scholar 

  59. Bucci I, Giuliani C, Napolitano G. Thyroid-stimulating hormone receptor antibodies in pregnancy: clinical relevance. Front Endocrinol (Lausanne). 2017;8:137.

    Article  Google Scholar 

  60. Emir S, Ekici F, Ikiz MA, Vidinlisan S. The association of consumptive hypothyroidism secondary to hepatic hemangioma and severe heart failure in infancy. Turk Pediatri Ars. 2016;51(1):52–6.

    Article  Google Scholar 

  61. Grasberger H. Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol Cell Endocrinol. 2010;322(1–2):99–106.

    Article  CAS  Google Scholar 

  62. Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem. 2006;281(27):18269–72.

    Article  CAS  Google Scholar 

  63. Kumar J, Gordillo R, Kaskel FJ, Druschel CM, Woroniecki RP. Increased prevalence of renal and urinary tract anomalies in children with congenital hypothyroidism. J Pediatr. 2009;154(2):263–6.

    Article  CAS  Google Scholar 

  64. Siebner R, Merlob P, Kaiserman I, Sack J. Congenital anomalies concomitant with persistent primary congenital hypothyroidism. Am J Med Genet. 1992;44(1):57–60.

    Article  CAS  Google Scholar 

  65. Hannoush ZC, Weiss RE. Defects of thyroid hormone synthesis and action. Endocrinol Metab Clin N Am. 2017;46(2):375–88.

    Article  Google Scholar 

  66. Hermanns P, Kumorowicz-Czoch M, Grasberger H, Refetoff S, Pohlenz J. Novel mutations in the NKX2.1 gene and the PAX8 gene in a Boy with Brain-Lung-Thyroid Syndrome. Exp Clin Endocrinol Diabetes. 2018 Feb;126(2):85–90.

    Article  CAS  Google Scholar 

  67. Bamforth JS, Hughes IA, Lazarus JH, Weaver CM, Harper PS. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989;26(1):49–51.

    Article  CAS  Google Scholar 

  68. Grasberger H, Refetoff S. Resistance to thyrotropin. Best Pract Res Clin Endocrinol Metab. 2017;31(2):183–94.

    Article  CAS  Google Scholar 

  69. Targovnik HM, Citterio CE, Rivolta CM. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract Res Clin Endocrinol Metab. 2017;31(2):195–212.

    Article  CAS  Google Scholar 

  70. Wangemann P. Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem. 2013;32(7):157–65.

    Article  CAS  Google Scholar 

  71. Choi BY, Stewart AK, Madeo AC, Pryor SP, Lenhard S, Kittles R, et al. Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms? Hum Mutat. 2009;30(4):599–608.

    Article  CAS  Google Scholar 

  72. Citterio CE, Morales CM, Bouhours-Nouet N, Machiavelli GA, Bueno E, Gatelais F, et al. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5′ splice site in the exon 6. Mol Cell Endocrinol. 2015;404:102–12.

    Article  CAS  Google Scholar 

  73. Iglesias A, Garcia-Nimo L, Cocho de Juan JA, Moreno JC. Towards the pre-clinical diagnosis of hypothyroidism caused by iodotyrosine deiodinase (DEHAL1) defects. Best Pract Res Clin Endocrinol Metab. 2014;28(2):151–9.

    Article  CAS  Google Scholar 

  74. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M, Leger A, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358(17):1811–8.

    Article  CAS  Google Scholar 

  75. Beck-Peccoz P, Rodari G, Giavoli C, Lania A. Central hypothyroidism – a neglected thyroid disorder. Nat Rev Endocrinol. 2017;13(10):588–98.

    Article  CAS  Google Scholar 

  76. Keller-Petrot I, Leger J, Sergent-Alaoui A, de Labriolle-Vaylet C. Congenital hypothyroidism: role of nuclear medicine. Semin Nucl Med. 2017;47(2):135–42.

    Article  Google Scholar 

  77. Rahmani K, Yarahmadi S, Etemad K, Koosha A, Mehrabi Y, Aghang N, et al. Congenital hypothyroidism: optimal initial dosage and time of initiation of treatment: a systematic review. Int J Endocrinol Metab. 2016;14(3):e36080.

    Article  Google Scholar 

  78. Leger J. Management of fetal and neonatal Graves’ disease. Horm Res Paediatr. 2017;87(1):1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Page, L.C., Benjamin, R.W. (2019). Fetal and Neonatal Thyroid Physiology. In: Eaton, J. (eds) Thyroid Disease and Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-99079-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99079-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99078-1

  • Online ISBN: 978-3-319-99079-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics