Skip to main content

Methanogenesis and Methane Emission in Rice / Paddy Fields

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 33))

Abstract

Rice fields are a major source of atmospheric methane (CH4), a greenhouse gas. CH4 emissions from wetland rice fields represents globally 15–20% of the annual anthropogenic CH4 emissions, and about 4% of the global CH4 emissions. Methane emission from rice cultivation may increase from the 1990 level of 97 Tg/year to 145 Tg/year by 2025 due to the increase in acreage and intensification of paddy cultivation. Here we review the role of anaerobic methanogenic bacteria in methane emission. We discuss the factors that influence methane emissions from rice fields, such as water regime, cropping season, soil temperature, fertilizer application, soil physico-chemical properties, crop cultivation, agricultural practices, soil type, soil profile and crop management practices. These practices control soil bacterial communities. Other influencing factors include intercultural operations such as ploughing, puddling and frequent mixing of soil during the paddy field preparation. Methane emission from paddy field follows a seasonal pattern of variation due to influence of climatic factors like temperature, sunlight, and precipitation. Algae, microphytes, macrophytes and anoxygenic photosynthetic bacteria significantly reduce CH4 emissions when they grow actively under illuminated condition. Methane emission is limited by alternate flooding-drying; cultivars with few unproductive tillers, small root system, high oxidative ability, and high harvest index; excessive application of organic amendments; application of potassium, biochar, nitrate, sulfate and ferric iron; and urease and nitrification inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhya TK, Pattanaik P, Sathpathy SN, Kumaraswamy S, Sethunathan N (1998) Influence of phosphorus application on methane emission and production in flooded paddy soils. Soil Biol Biochem 30:177–181. https://doi.org/10.1016/S0038-0717(97)00104-1

    Article  CAS  Google Scholar 

  • Adhya TK, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunathan N, Wassmann R (2000) Methane emission from rice fields at Cuttack, India. Nutr Cycl Agroecosyst 58:95–105. https://doi.org/10.1023/A:1009886317629

    Article  CAS  Google Scholar 

  • Ali MA, Lee CH, Kim PJ (2008) Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biol Fertil Soils 44:597–604. https://doi.org/10.1007/s00374-007-0243-5

    Article  CAS  Google Scholar 

  • Ali MA, Lee CH, Kim SY, Kim PJ (2009) Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manag 29(10):2759–2764. https://doi.org/10.1016/j.wasman.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  • Anastasi C, Dowding M, Simpson VJ (1992) Future CH4 emissions from rice production. J Geophys Res 97:7521–7525

    Article  CAS  Google Scholar 

  • Asakawa S, Kimura M (2008) Comparison of bacterial community structures at main habitats in paddy field ecosystem based on DGGE analysis. Soil Biol Biochem 40:1322–1329. https://doi.org/10.1016/j.soilbio.2007.09.024

    Article  CAS  Google Scholar 

  • Asari N, Ishihara R, Nakajima Y, Kimura M, Asakawa S (2007) Succession and phylogenetic composition of eubacterial communities in rice straw during decomposition on the surface of paddy field soil. Soil Sci Plant Nutr 53(1):56–65. https://doi.org/10.1111/j.1747-0765.2007.00110.x

    Article  CAS  Google Scholar 

  • Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000) Methane transport capacity of rice plants. I. Influence of methane concentration and growth stage analyzed with an automated measuring system. Nutr Cycl Agroecosyst 58:357–366. https://doi.org/10.1023/A:1009831712602

    Article  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Rennenberg H (2001) Methane emissions from rice fields-quantification, mechanisms, role of management, and mitigation options. Adv Agron 70:193–260

    Article  Google Scholar 

  • Bharati K, Mohanty SR, Singh DP, Rao VR, Adhya TK (2000) Influence of incorporation or dual cropping of Azolla on methane emission from a flooded alluvial soil planted to rice in eastern India. Agric Ecosyst Environ 79:73–83

    Article  CAS  Google Scholar 

  • Bloom A, Swisher M (2010) Emissions from rice production. In: Cleveland CJ (ed) Encyclopedia of earth, Washington, DC. http://www.eoearth.org/article/Emissions from RiceProduction?topic=54486. Accessed on 11 July 2012

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424. https://doi.org/10.1038/35000193

    Article  CAS  PubMed  Google Scholar 

  • Bronson KF, Mosier AR (1991) Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane and carbon dioxide emissions from flooded rice. Biol Fertil Soils 11:116–120. https://doi.org/10.1007/BF00336375

    Article  CAS  Google Scholar 

  • Cai ZC, Xing GX, Yan XY, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    Article  CAS  Google Scholar 

  • Cai ZC, Tsuruta H, Minami K (2000) Methane emission from rice fields in China: measurements and influencing factors. J Geophys Res 105:17231–17242

    Article  CAS  Google Scholar 

  • Cai ZC, Tsuruta H, Gao M, Xu H, Wei CF (2003) Options for mitigating methane emission from a permanently flooded rice field. Glob Chang Biol 9:37–45

    Article  Google Scholar 

  • Chen J, Xuan J, Du C, Xie J (1997) Effect of potassium nutrition of rice on rhizosphere redox status. Plant Soil 188:131–137

    Article  CAS  Google Scholar 

  • Chen HZ, Zhu DF, Lin XQ, Zhang YP (2007) Effects of soil permeability on root growth and nitrogen utilization in rice. Chin J Eco-Agric 15:34–37

    CAS  Google Scholar 

  • Chen G, Zheng Z, Yang S, Fang C, Zou X, Zhang J (2010) Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process Technol 91:1416–1421

    Article  CAS  Google Scholar 

  • Chidthaisong A, Conrad R (2000) Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biol Biochem 32:977–988

    Article  CAS  Google Scholar 

  • Chin KJ, Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18:85–102

    Article  CAS  Google Scholar 

  • Chin KJ, Lukow T, Conrad R (1999) Effect of Temperature on structure and function of the methanogenic archaeal community in an anoxic rice field, soil. Appl Environ Microbiol 65:2341–2349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chin KJ, Lueders T, Friedrich MW, Klose M, Conrad R (2004) Archaeal community structure and pathway of methane formation on rice roots. Microb Ecol 47:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86:7203–7209

    Article  CAS  Google Scholar 

  • Clegg CD, Lovell RDL, Hobbus PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soil. FEMS Microbiol Ecol 43:263–270

    Article  CAS  PubMed  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments (review). FEMS Microbiol Ecol 28:19–202

    Article  Google Scholar 

  • Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosyst 64:59–69. https://doi.org/10.1023/A:1021178713988

    Article  CAS  Google Scholar 

  • Conrad R, Klose M (2005) Effect of potassium phosphate fertilization on production and emission of methane and its 13C-stable isotope composition in rice microcosms. Soil Biol Biochem 37:2099–2108

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Claus P (2000) Phosphate inhibits acetotrophic methanogenesis on rice roots. Appl Environ Microbiol 66:828–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corton TM, Bajita J, Grospe F, Pamplona R, Wassmann R, Lantin RS (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). In: Wassmann R, Lantin RS, Neue HU (eds) Methane emissions from major rice ecosystems in Asia, Developments in plant and soil sciences, vol 91. Springer, Dordrecht

    Google Scholar 

  • Dannenberg S, Conrad R (1999) Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45:53–71. https://doi.org/10.1007/BF00992873

    Article  Google Scholar 

  • Dubey SK (2001) Methane emission and rice agriculture. Curr Sci 81:345–346

    CAS  Google Scholar 

  • FAOSTAT Database (2008) FAO, Rome. 22 September 2008. http://beta.irri.org/solutions/index.php?option=com_content&task=view&id=250

  • Feng JN, Hsieh YP (1998) Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading. J Environ Qual 27:968–972

    Article  CAS  Google Scholar 

  • Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66:4790–4797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fey A, Chin KJ, Conrad R (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3:295–303

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    Article  CAS  Google Scholar 

  • Furukawa Y, Inubushi K (2002) Feasible suppression technique of methane emission from paddy soil by iron amendment. Nutr Cycl Agroecosyst 64:193–201

    Article  CAS  Google Scholar 

  • Glissmann K, Conrad R (2000) Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31:117–126

    Article  CAS  PubMed  Google Scholar 

  • Hadas O, Pinkas R (1995) Sulfate reduction processes in sediments at different sites in Lake Kinneret, Israel. Microb Ecol 30:55–66

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Nishiyama M, Otsuka S, Matsumoto S (2005) Effects of inoculation of phototrophic bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Sci Plant Nutr 51:361–367

    Article  Google Scholar 

  • Hattori C, Ueki A, Seto T, Ueki K (2001) Seasonal variations in temperature dependence of methane production in paddy soil. Microbes Environ 16:227–233

    Article  Google Scholar 

  • He JZ, Zheng Y, Chen CR, He YQ, Zhang LM (2008) Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soils Sediments 8:349–358

    Article  CAS  Google Scholar 

  • Holzapfel-Pschorn A, Conrad R, Seiler W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233

    Article  CAS  Google Scholar 

  • Hua L, Wu W, Liu Y, McBride MB, Chen Y (2009) Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res 16:1–9

    Article  CAS  Google Scholar 

  • Inubushi K, Muramatsu Y, Umebayashi M (1992) Influence of percolation on methane emission from flooded paddy soil. Japan J soil Sci Plant Nutr 63:184–189

    CAS  Google Scholar 

  • Inubushi K, Sugii H, Nishono S, Nishino E (2001) Effect of aquatic weeds on methane emission from submerged paddy soil. Am J Bot 88:975–979

    Article  CAS  PubMed  Google Scholar 

  • IPCC (1996) XII Summary for policy makers. In: Houghton IT, Meira F, Callander LG, Harris BA, Kattenberg A, Maskell K (eds) Climate change 1995: the scientific basis of climate. Cambridge University Press, Cambridge, p 572

    Google Scholar 

  • IPCC (2007) Climate change 2007: couplings between changes in the climate system and biogeochemistry. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter7pdf

  • IRRI (2006) http://www.irri.org/science/ricestat/pdfs/WRS2005-Table02.pdf

  • Islam R, Trivedi P, Madhaiyan M, Seshadri S, Lee G, Yang Y, Kim M, Han G, Singh Chauban P, Sa T (2010) Isolation, enumeration and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biol Fertil Soils 46:261–269

    Article  CAS  Google Scholar 

  • Jackel U, Schnell S, Conrad R (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33:965–971

    Article  CAS  Google Scholar 

  • Jagadeesh Babu Y, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst 74:157–174. https://doi.org/10.1007/s10705-005-6111-5

    Article  CAS  Google Scholar 

  • Jain MC, Kumar S, Wassman R, Mitra S, Singh SD, Sing JP, Singh R, Yadav AK, Gupta S (2000) Methane emissions from irrigated rice fields in northern India (New Delhi). Nutr Cycl Agroecosyst 58:75–83

    Article  CAS  Google Scholar 

  • Jia ZJ, Cai ZC, Xu H, Tsuruta H (2002) Effects of rice cultivars on methane fluxes in a paddy soil. Nutr Cycl Agroecosyst 64:87–94

    Article  CAS  Google Scholar 

  • Jiang CS, Wang YS, Zheng XH, Zhu B, Huang Y, Hao QJ (2006) Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China. Adv Atmos Sci 23:415–424

    Article  CAS  Google Scholar 

  • Kang GD, Cai ZC, Feng XZ (2002) Importance of water regime during the non-rice growing period in winter in regional variation of CH4 emissions from rice fields during following rice growing period in China. Nutr Cycl Agroecosyst 64:95–100

    Article  CAS  Google Scholar 

  • Keerthisinghe DG, Freney JR, Mosier AR (1993) Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice. Biol Fertil Soils 16:71–75

    Article  Google Scholar 

  • Keppler F, Hamilton JT, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Khalil MAK, Rasmussen RA (1991) Methane emission from the rice field in China. Environ Sci Technol 25:979–981

    Article  CAS  Google Scholar 

  • Kimura M (2000) Anaerobic microbiology in waterlogged rice fields. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 35–138

    Google Scholar 

  • Kimura M, Murase J, Lu YH (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36:1399–1416

    Article  CAS  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root induced iron oxidation, pH change and zinc solubilization in the rhizosphere of low land rice. New Phytol 131:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kluber HD, Conrad R (1998) Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol Ecol 25:301–318

    Article  CAS  Google Scholar 

  • Kludze HK, DeLaune RD, Patrick WH Jr (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 57:386–391

    Article  CAS  Google Scholar 

  • Kristjansson JK, Scheonheit P, Thauer RK (1982) Different Ks values for hydrogen and methanogenic and sulphate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulphate. Arch Microbiol 131:278–282

    Article  CAS  Google Scholar 

  • Kruger M, Frenzel P (2003) Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob Chang Biol 9:773–784

    Article  Google Scholar 

  • Kruger M, Frenzel P, Kemnitz D, Conrad R (2005) Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51:323–331

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Park KD, Jung KY, Ali MA, Lee D, Gutierrez J, Kim PJ (2010) Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agric Ecosyst Environ 138:343–347

    Article  Google Scholar 

  • Lee SY, Lee SH, Jang JK, Cho KS (2011) Comparison of methanotrophic community and methane oxidation between rhizospheric and non-rhizospheric soils. Geomicrobiol J 28(8):676–685. https://doi.org/10.1080/01490451.2010.511984

    Article  CAS  Google Scholar 

  • Li D, Liu M, Cheng Y, Wang D, Qin J, Jiao J, Li H, Hu F (2011) Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Tillage Res 113(2):77–81

    Article  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Wu CY (2004) Evaluation of methane emissions from Taiwanese paddies. Sci Total Environ 333:195–207

    Article  CAS  PubMed  Google Scholar 

  • Liu DY, Ding WX, Jia ZJ, Cai ZC (2011) Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 8:329–338. https://doi.org/10.5194/bg-8-329-2011

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu W, Liao Z, Zhang J, Cen C (1999) Effects of differnet rice-vegetable rotation systems on CH4 emission from paddy soils. Agro Environ Prot 18(5):200–202

    Google Scholar 

  • Lu WF, Chen W, Duan BW, Guo WM, Lu Y, Lantin RS, Wassmann R, Neue HU (2000) Methane emissions and mitigation options in irrigated rice fields in southeast China. Nutr Cycl Agroecosyst 58:65–73

    Article  CAS  Google Scholar 

  • Major J, Steiner C, Di Tommaso A, Falcao NPS, Lenmann J (2005) Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: compost, fertilizer, manure and charcoal applications. Weed Biol Manage 5:69–76

    Article  Google Scholar 

  • Masscheleyn PH, DeLaune RD, Pattrick WH Jr (1993) Methane and nitrous oxide emissions from laboratory measurements of rice soil suspensions: effect of soil oxidation reduction status. Chemosphere 26:251–260

    Article  CAS  Google Scholar 

  • Matthews RB, Wassmann R, Knox JK, Buendia LV (2000) Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. IV. Upscaling to national levels. Nutr Cycl Agroecosyst 58:201–217

    Article  CAS  Google Scholar 

  • Mingxing W, Jing L (2002) CH4 emission and oxidation in Chinese rice paddies. Nutrt Cycl Agroecosyst 64:43–55

    Article  Google Scholar 

  • Nakayama N, Okabe A, Toyota K, Kimura M, Asakawa S (2006) Phylogenetic distribution of bacteria isolated from the flood water of a Japanese paddy field. Soil Sci Plant Nutr 52(3):305–312

    Article  CAS  Google Scholar 

  • Naser HM, Nagata O, Tamura S, Hatano R (2007) Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci Plant Nutr 53:95–101

    Article  CAS  Google Scholar 

  • Neue HU, Roger PA (2000) Rice agriculture: factors controlling emissions. In: Khalil MAK (ed) Atmospheric methane. Its role in the global environment. Springer, Berlin, pp 134–169

    Google Scholar 

  • Neue HU, Scharpenseel HW (1984) Gaseous products of the decomposition of organic matter in submerged soils. In: Organic matter and rice. International Rice Research Institute, Manila, pp 311–328

    Google Scholar 

  • Neue HU, Latin RS, Wassmann R, Aduna JB, Alberto CR, Andales MJF (1992) Methane emission from rice soils of the Philippines. In: Minami K, Mosier A, Sass R (eds) CH4 and N2O global emissions and controls from rice fields and other agriculture and industrial sources, NIAES series 2. National Institute of Agro-Environmental Sciences, Tsukuba, pp 55–64

    Google Scholar 

  • Nirmal Kumar JI, Viyol SV (2009) Short-term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ 7:11–16. https://doi.org/10.1007/s10333-008-0147-5

    Article  Google Scholar 

  • Noll M, Matthies D, Frenzel P, Frenzel M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7:382–395

    Article  CAS  PubMed  Google Scholar 

  • Okabe A, Toyota K, Kimura M (2000) Seasonal variations of phospholipid fatty acid composition in the flood water of a Japanese paddy field under a long-term fertilizer trial. Soil Sci Plant Nutr 46(1):177–188

    Article  CAS  Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulphate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136

    CAS  Google Scholar 

  • Patrick WH Jr (1981) The role of inorganic redox systems in controlling reduction in paddy soils. In: Proceedings of symposium on paddy soil. Institute of Soil Science, Academia Sinica/Springer, Beijing/Berlin, pp 107–117

    Chapter  Google Scholar 

  • Prinn RG (1995) Global atmospheric-biospheric chemistry. In: Prinn RG (ed) Global atmospheric-bioshperic chemistry. Plenum, New York, pp 1–18

    Google Scholar 

  • Qin Z, Zhang JE, Luo SM, Xu HQ, Zhang J (2010) Estimation of ecological services value for the rice-duck farming system. Resour Sci 32(5):864–872

    Google Scholar 

  • Qiu QF, Noll M, Abraham WR, Lu YH, Conrad R (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2:602–614

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37:175–186

    Article  CAS  Google Scholar 

  • Ratering S, Schnell S (2000) Localization of iron-reducing activity in paddy soil by profile studies. Bioegeochemistry 48:341–365

    Article  CAS  Google Scholar 

  • Renner R (2007) Rethinking biochar. Environ Sci Technol 41:5932–5933

    Article  CAS  PubMed  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration, Baltimore, USA, March 21–24, p 208

    Google Scholar 

  • Rondon MA, Molina D, Hurtado M, Ramirez J, Lehmann J, Major J, Amezquita E (2006) Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils. In: 18th world congress of soil science, July 9–15, Philadelphia, PA, http://crops.confex.com/crops/wc2006/techprogram/P16849.HTM. Accessed on Dec 2012

  • Rui J, Peng J, Lu Y (2009) Succession of Bacterial Populations during Plant Residue Decomposition in Rice Field Soil. Appl Environ Microbiol 75(14):4879–4886. https://doi.org/10.1128/AEM.00702-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saenjan P, Wada H 1990 Effects of salts on methane formation and sulfate reduction in submerged soil. In: Transactions of the 14th international congress of soil science vol 2, Commission 2, 12–18 August, Kyoto, Japan, pp 244–248

    Google Scholar 

  • Sass RL, Fisher FM (1992) CH4 emission from paddy fields in the United States gulf coast area. In: Minami K, Mosier A, Sass R (eds) CH4 and N2O global emissions and controls from rice fields and other agriculture and industrial sources, NIAES series 2. National Institute of Agro-Environmental Sciences, Tsukuba, pp 65–78

    Google Scholar 

  • Sass RL, Fisher FM Jr (1994) CH4 emission from paddy fields in the United States gulf coast area. In: Minami CK, Mosier A, Sass RL (eds) CH4 and N2O: global emissions and controls from rice fields and other agricultural and industrial sources, NIAES series 2. National Institute of Agro-Environmental Sciences, Tsukuba, pp 65–77

    Google Scholar 

  • Sass RL, Fisher FM, Harcombe PA, Turner FT (1990) Methane production and emission in Texas rice fields. Glob Biogeochem Cycles 4:47–68

    Article  CAS  Google Scholar 

  • Satpathy SN, Mishra S, Adhya TK, Ramakrishnan B, Rao VR, Sethunathan N (1998) Cultivar variation in methane efflux from tropical rice. Plant Soil 202:223–229

    Article  CAS  Google Scholar 

  • Schimel J (2000) Global change: rice, microbes and methane. Nature 403:375–377. https://doi.org/10.1038/35000325

    Article  CAS  PubMed  Google Scholar 

  • Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416. https://doi.org/10.1029/JD094iD13p16405

    Article  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB, Sebacher SM, Grice SS (1986) Atmospheric methane sources: alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus 38B:1–10

    Article  CAS  Google Scholar 

  • Singh NK, Dhar DW (2006) Sewage effluent: a potential nutrient source for microalgae. Proc Indian Natl Sci Acad 72:113–120

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2007) Nitrogen and phosphorous scavenging potential in microalgae. Indian J Biotechnol 6:52–56

    CAS  Google Scholar 

  • Singh NK, Dhar DW (2011) Phylogenetic relatedness among Spirulina and related cyanobacterial genera. World J Microbiol Biotechnol 27:941–951. https://doi.org/10.1007/s11274-010-0537-x

    Article  Google Scholar 

  • Singh NK, Patel DB (2012) Microalgal remediation of distillery effluent: a review. In: Lichtfouse E (ed) Farming for food and water security, Sustainable agriculture reviews, vol 10. Springer, Dordrecht, pp 83–109. https://doi.org/10.1007/978-94-007-4500-1

    Chapter  Google Scholar 

  • Singh NK, Dhar DW, Tabassum R (2016a) Role of cyanobacteria in crop protection. Proc Natl Acad Sci India Sect B Biol Sci 86(1):1–8. https://doi.org/10.1007/s40011-014-0445-1 ISSN 0369-8211

    Article  CAS  Google Scholar 

  • Singh NK, Desai CK, Rathore BS, Chaudhari BG (2016b) Bio-efficacy of herbicides on performance of mustard, Brassica juncea (L.) and population dynamics of agriculturally important bacteria. Proc Natl Acad Sci India Sect B Biol Sci 86(3):743–748. https://doi.org/10.1007/s40011-015-0521-1 ISSN 0369-8211

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Sugano A, Tsuchimoto H, Cho TC, Kimura M, Asakawa S (2005) Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses. Archaea 1:391–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–122

    CAS  Google Scholar 

  • Takahashi S, Uenosono S, Ono S (2003) Short- and long-term effects office straw application on nitrogen uptake by crops and nitrogen mineralization under flooded and upland conditions. Plant Soil 251:291–301. https://doi.org/10.1023/A:1023006304935

    Article  CAS  Google Scholar 

  • Takai Y, Kamura T (1966) The mechanism of reduction in waterlogged paddy soil. Folia Microbiol 11:304–313

    Article  CAS  Google Scholar 

  • Tanaka H, Kyaw K, Toyota K, Motobayashi T (2010) Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm. Biol Fertil Soils 42:501–505

    Article  Google Scholar 

  • Towprayoon S, Smakgahn K, Poonkqew S (2005) Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • van der Gon HAD, van Bodegom PM, Wassmann R, Lantin RS, Metra-Corton T (2001) Assessing sulfate-containing soil amendments to reduce methane emissions from rice fields: mechanisms, effectiveness and costs. Mitig Adapt Strateg Glob Chang 6:69–87. https://doi.org/10.1023/A:1011380916490

    Article  Google Scholar 

  • van der Gon HAD, Kropff MJ, van Breemen N, Wassmann R, Lantin RS, Aduna E, Corton TM (2002) Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci U S A 99:12021–12024. https://doi.org/10.1073/pnas.192276599

    Article  CAS  Google Scholar 

  • Wang MX (2001) Methane emission from chinese rice fields. Science Press, Beijing, p 223

    Google Scholar 

  • Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosyst 58:349–356

    Article  CAS  Google Scholar 

  • Wang ZP, Delaune RD, Patrick WH Jr, Masscheleyn PH (1993) Soil redox and pH effects on methane production in a flooded rice soils. Soil Sci Soc Am J 57:382–385

    Article  CAS  Google Scholar 

  • Wang B, Neue HU, Samonte HP (1997) Effect of cultivar difference (‘IR72’, ‘IR65598’, and ‘Dular’) on methane emission. Agric Ecosyst Environ 62:31–40

    Article  Google Scholar 

  • Wang ZY, Xu YC, Li Z, Guo YX, Wassmann R, Neue HU, Lantin RS, Buendia LV, Ding YP, Wang ZZ (2000) A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Nutr Cycl Agroecosyst 58:55–63

    Article  Google Scholar 

  • Wang H, Lin K, Hou Z, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10:283–289

    Article  CAS  Google Scholar 

  • Watanabe T, Kimura M, Asakawa S (2006) Community structure of methanogenic archaea in paddy field soil under double cropping (rice-wheat). Soil Biol Biochem 38:1264–1274

    Article  CAS  Google Scholar 

  • Watanabe T, Kimura M, Asakawa S (2007) Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biol Biochem 39:2877–2887

    Article  CAS  Google Scholar 

  • Watanabe T, Hosen Y, Agbisit R, Llorca L, Fujita D, Asakawa S Kimura M (2010) Changes in community structure and transcriptional activity of methanogenic archaea in a paddy field soil brought about by a water-saving practice – Estimation by PCR-DGGE and qPCR of 16S rDNA and 16S rRNA. In: 19th World Congress Of Soil Science, Soil Solutions For A Changing World, 1–6 August 2010, Brisbane, Australia

    Google Scholar 

  • Weber S, Lueders T, Friedrich MW, Conrad R (2001) Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 38:11–20

    Article  CAS  Google Scholar 

  • Win KT, Nonaka R, Toyota K, Motobayashi T, Hosomi M (2010) Effects of option mitigating ammonia volatilization on CH4 and N2O emissions from a paddy field fertilized with anaerobically digested cattle slurry. Biol Fertil Soils 46:589–595. https://doi.org/10.1007/s00374-010-0465-9

    Article  Google Scholar 

  • Wu XL, Chin KJ, Stubner S, Conrad R (2001) Functional patterns and temperature response of cellulose-fermenting microbial cultures containing different methanogenic communities. Appl Microbiol Biotechnol 56:212–219

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Ma K, Li Q, Ke X, Lu Y (2009) Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer. Microbial Ecol 58:819–826

    Article  CAS  Google Scholar 

  • Wu M, Qin H, Chen Z, Wu J, Wei W (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol Fertil Soils 47:397–405. https://doi.org/10.1007/s00374-010-0535-z

    Article  Google Scholar 

  • Xie B, Zheng X, Zhou Z, Gu J, Zhu B, Chen X, Shi Y, Wang Y, Zhao Z, Liu C, Yao Z, Zhu J (2010) Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant Soil 326:393–401. https://doi.org/10.1007/s11104-009-0020-3

    Article  CAS  Google Scholar 

  • Xiong ZQ, Xing GX, Zhu ZL (2007) Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere 17:146–155

    Article  CAS  Google Scholar 

  • Xu Q (2001) Evolution of soil fertility in relation to soil quality in paddy fields of the Tai Lake area, Yangtze Basin. Res Environ 10(4):323–328

    Google Scholar 

  • Xu H, Cai ZC, Li XP, Tsuruta H (2000) Effect of antecedent soil water regime and rice straw application time on CH4 emission from rice cultivation. Aust J Soil Res 38:1–12

    Article  Google Scholar 

  • Xu H, Cai ZC, Jia ZJ (2002) Effect of soil water contents in the non-rice growth season on CH4 emission during the following rice-growing period. Nutr Cycl Agroecosyst 64:101–110

    Article  CAS  Google Scholar 

  • Xu H, Cai ZC, Tsuruta H (2003) Soil moisture between rice growing season affects methane emission, production, and oxidation. Soil Sci Soc Am J 67:1147–1157

    Article  CAS  Google Scholar 

  • Yagi K, Minami K (1990) Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr 36:599–610

    Article  CAS  Google Scholar 

  • Yamane I, Sato K (1964) Decomposition of glucose and gas formation in flooded soils. Soil Sci Plant Nutr 10:127–133

    Article  CAS  Google Scholar 

  • Yan XY, Akiyama H, Yagi K, Akimoto H (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Global Biogeochem Cycles 23:1–15

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang SS, Chang HL (1998) Effect of environmental conditions on methane production and emission from paddy soil. Agric Ecosyst Environ 69:69–80

    Article  CAS  Google Scholar 

  • Yang SS, Chang HL (1999) Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric Ecosyst Environ 76:75–84

    Article  CAS  Google Scholar 

  • Yao H, Conrad R, Wassmann R, Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295

    Article  CAS  Google Scholar 

  • Yue J, Shi Y, Liang W, Wu J, Wang C, Huang G (2005) Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutr Cycl Agroecosyst 73:293–301. https://doi.org/10.1007/s10705-005-3815-5

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010a) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain. China Agric Ecosyst Environ 139:469–475. https://doi.org/10.1016/j.agee.2010.09.003

    Article  CAS  Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010b) Effect of Pinus radiate derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158:2821–2825

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhang X, Ma J, Xu H, Cai Z (2011) Effect of drainage in the fallow season on reduction of CH4 production and emission from permanently flooded rice fields. Nutr Cycl Agroecosyst 89:81–91. https://doi.org/10.1007/s10705-010-9378-0

    Article  CAS  Google Scholar 

  • Zheng Y, Zhang LM, Zheng YM, Di HJ, He JZ (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8:406–414

    Article  CAS  Google Scholar 

  • Zou JW, Huang Y, Jiang JY, Zheng XH, Sass RL (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycles 19:GB2021. https://doi.org/10.1029/2004GB002401

    Article  CAS  Google Scholar 

  • Zou JW, Huang Y, Zheng XH, Wang Y (2007) Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: dependence on water regime. Atmos Environ 41:8032–8042

    Article  CAS  Google Scholar 

  • Zwieten VL, Singh B, Joseph S, Kimber S, Cowie A, Chan YK (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan Press, London, pp 227–224

    Google Scholar 

Download references

Acknowledgements

Authors humbly acknowledge the assistance provided by the Vice Chancellor, S.D. Agricultural University (Gujarat, India) for preparation of this manuscript. This article does not attract any conflict of interest among the authors/institutions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N.K., Patel, D.B., Khalekar, G.D. (2018). Methanogenesis and Methane Emission in Rice / Paddy Fields. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 33. Sustainable Agriculture Reviews, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-99076-7_5

Download citation

Publish with us

Policies and ethics