Bioenergy and Sustainable Agriculture

  • Hossein Zahedi
Part of the Sustainable Agriculture Reviews book series (SARV, volume 33)


Intensive use of non renewable fossil fuels hampers the development of the human society. Energy plays a central role in the global economy. Changes in energy costs have significant effects on economic growth. Bioenergy is an alternative energy source able to supply liquid transportation fuels. Sustainable development requires energy source stability and environmental maintenance. Biomass is the principal supporter of renewable energy, accounting for 59.2% of total renewable sources in 2015 in the European Union (EU). This chapter reviews renewable energy aspects focusing on bioenergy production, crops residues and algae to produce biofuel.


Biofuel Algae Crops residual Sustainable development 


  1. Akay G, Dogru M, Calkan OF, Calkan B (2005) Biomass processing in biofuel applications. In: Lens P (ed) Biofuels for fuel cells: renewable energy from biomass fermentation. IWA, London, p 51Google Scholar
  2. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30(10):1898–1902. CrossRefPubMedGoogle Scholar
  3. Bailis R (2011) Energy and poverty: perspective of poor countries. In: Galarraga I, Gonzlez-Eguino M, Markandya A (eds) Handbook of sustainable energy. Edward Elgar Publishing, Incorporated, pp 505–537. CrossRefGoogle Scholar
  4. Basu P (2013) Introduction. In: Basu P (ed) Biomass gasification, pyrolysis and torrefaction, 2nd edn. Academic, Boston, pp 1–27. CrossRefGoogle Scholar
  5. Belay A (2007) Spirulina (Arthrospira) production and quality assurance. In: Gershwin M, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton. CrossRefGoogle Scholar
  6. Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with microalgae-technology road map. Final Report submitted to the US Department of Energy, National Energy Technology LaboratoryGoogle Scholar
  7. Benemann JR (2008) Opportunities and challenges in algae biofuels production. Algae World Singapore, November 17–18Google Scholar
  8. Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass, final report. United States Department of Energy, Washington, DC. CrossRefGoogle Scholar
  9. Boerrigter H (2006a) Economy of biomass-to-liquids (BTL) plants: an engineering assessment. ECN Biomass, Coal & Environmental Research, PettenGoogle Scholar
  10. Boerrigter H (2006b) Economy of biomass-to-liquids (BTL) plants: an engineering assessment. Internal Report, Energy Commission of The NetherlandsGoogle Scholar
  11. Buratti C, Barbanera M, Lascaro E (2015) Ethanol production from vineyard pruning residues with steam explosion pretreatment. Environ Prog Sustain Energy 34(3):802–809. CrossRefGoogle Scholar
  12. Castanheira ÉG, Grisoli R, Coelho S, Anderi da Silva G, Freire F (2015) Life-cycle assessment of soybean-based biodiesel in Europe: comparing grain, oil and biodiesel import from Brazil. J Clean Prod 102:188–201. CrossRefGoogle Scholar
  13. Chandrasekaran M, Bahkali AH (2013) Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology – review. Saudi J Biol Sci 20(2):105–120. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. CrossRefPubMedGoogle Scholar
  15. Cornell CB (2009) First algae biodiesel plant goes online. Retrieved on 27th April, from
  16. Delucchi MA (1997) Emissions of non-CO2 greenhouse gases from the production and use of transportation fuels and electricity. Institute of Transportation Studies paper number UCD-ITS-RR-97-05Google Scholar
  17. Demain A, Newcomb M, Wu D (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dhillon GS, Kaur S, Brar SK (2013) Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: a review. Renew Sustain Energy Rev 27:789–805 10.1016/j.rser.2013.06.046CrossRefGoogle Scholar
  19. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic prototroph: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240. CrossRefPubMedGoogle Scholar
  20. El Boushy ARY, Poel AFBVD (2000) Fruit, vegetable and brewers’ waste. In: Boushy ARYE, Poel AFBVD (eds) Handbook of poultry feed from waste. Springer, New York, pp 173–311. CrossRefGoogle Scholar
  21. EPA (2002) Clean alternative fuels: biodiesel. United States Environmental protection Agency; EPA 420-F-00-032.
  22. EPA (2010) Renewable fuel standard program (RFS2) regulatory impact analysis. U.S. Environmental Protection Agency, Ann Arbor fuels/420r10006.pdfGoogle Scholar
  23. Fabbri A, Bonifazi G, Serranti S (2015) Micro-scale energy valorization of grape marcs in winery production plants. Waste Manag 36:156–165. CrossRefPubMedGoogle Scholar
  24. FAOSTAT (2013) Food and Agriculture Organization of the United Nations, Statistics DivisionGoogle Scholar
  25. García Martín JF, Sánchez S, Cuevas M (2013) Evaluation of the effect of the dilute acid hydrolysis on sugars release from olive prunings. Renew Energy 51:382–387. CrossRefGoogle Scholar
  26. Girard P, Fallot A (2006) Review of existing and emerging technologies for the production of biofuels in developing countries. Energy Sustain Dev 10(2):92–108. CrossRefGoogle Scholar
  27. González-García S, Moreira MT, Feijoo G (2010) Environmental performance of lignocellulosic bioethanol production from Alfalfa stems. Biofuels Bioprod Biorefin 4(2):118–131. CrossRefGoogle Scholar
  28. Gouveia L, Oliveira AC (2008) Microalgae as a raw material for biofuels production. J Indust Microbiol Biotechnol 36(2):269–274. CrossRefGoogle Scholar
  29. IEA (2008) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris. CrossRefGoogle Scholar
  30. IEA (2013) Resources to reserves 2013. International Energy Agency, Paris Google Scholar
  31. IEA Bioenergy Task 39 (2015) Commercializing liquid biofuels from biomass, a database on facilities for the production of advanced liquid and gaseous biofuels for transport. J Microbiol Exp 4(4).,
  32. Jin V, Baker J, Johnson JF, Karlen D, Lehman RM, Osborne S, Sauer T, Stott D, Varvel G, Venterea R, Schmer M, Wienhold B (2014) Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US corn belt. Bioenergy Res 7(2):517–527. CrossRefGoogle Scholar
  33. Khanal S, Anex RP, Gelder BK, Wolter C (2014) Nitrogen balance in Iowa and the implications of corn-stover harvesting. Agric Ecosyst Environ 183:21–30. CrossRefGoogle Scholar
  34. Kheshgi H, Akhurst M, Christensen D, Cox R, Greco R, Kempsell S, Kramer G, Organ R, Stileman T (2004) Transportation and climate change: opportunities, challenges and long term strategies. In: Summary brochure of the international petroleum industry, environment conservation association, Baltimore, USA, 12–13 OctoberGoogle Scholar
  35. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375. CrossRefGoogle Scholar
  36. Kremer G, Bayless DJ, Vis M, Prudich M, Cooksey K, Muhs J (2006) Enhanced practical photosynthetic CO2 mitigation. Office of Scientific and Technical Information (OSTI).
  37. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012. CrossRefGoogle Scholar
  38. Leiva-Candia DE, Pinzi S, Redel-Macías MD, Koutinas A, Webb C, Dorado MP (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42. CrossRefGoogle Scholar
  39. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756. CrossRefPubMedGoogle Scholar
  40. Liang S, McDonald AG (2014) Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem 62(33):8421–8429. CrossRefPubMedGoogle Scholar
  41. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467. CrossRefGoogle Scholar
  42. López-Linares JC, Romero I, Cara C, Ruiz E, Moya M, Castro E (2014) Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122:112–118. CrossRefGoogle Scholar
  43. Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5(1):22. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ 89(3):149–166. CrossRefGoogle Scholar
  45. Mendes JAS, Xavier AMRB, Evtuguin DV, Lopes LPC (2013) Integrated utilization of grape skins from white grape pomaces. Ind Crop Prod 49:286–291. CrossRefGoogle Scholar
  46. Metzger JO, Huttermann A (2008) Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften Springer 96:279–288. CrossRefGoogle Scholar
  47. Mitchell JV (2002) A new political economy of oil. Q Rev Econ Finance 42:251–272. CrossRefGoogle Scholar
  48. Mohamed M, Yusup S, Machmudah S, Goto M, Uemura Y (2014) Upgrading of oil palm empty fruit bunch to value-added products. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass bioenergy. Springer International Publishing, pp 63–78. Google Scholar
  49. Nakamura T, Senior CL (2005) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae. Office of Scientific and Technical Information (OSTI), Pittsburgh. CrossRefGoogle Scholar
  50. Novy V, Longus K, Nidetzky B (2015) From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnol Biofuels 8(1):46. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Office of Energy Efficiency & Renewable Energy (2013) Integrated biorefineries: biofuels, biopower, and bioproducts. U.S. Department of Energy, Washington, DC Google Scholar
  52. Oliveira AD, Ribeiro EP, Bone RB, Losekann L (2010) Energy restrictions to growth: the past, present and future energy supply in Brazil. In: Amann E, Baer W, Coes D (eds) Energy, bio fuels and development. Routledge, London, pp 51–64Google Scholar
  53. Onwudili J (2014) Hydrothermal gasification of biomass for hydrogen production. In: Jin F (ed) Application of hydrothermal reactions to biomass conversion. Springer, Berlin/Heidelberg, pp 219–246. CrossRefGoogle Scholar
  54. Pandey A (2017) Microalgae biomass production for CO2 mitigation and biodiesel production. Journal of Microbiology & Experimentation 4(4).
  55. Petrou EC, Pappis CP (2014) Bioethanol production from cotton stalks or corn stover? A comparative study of their sustainability performance. ACS Sustain Chem Eng 2(8):2036–2041. CrossRefGoogle Scholar
  56. Ping L, Brosse N, Sannigrahi P, Ragauskas A (2011) Evaluation of grape stalks as a bioresource. Ind Crop Prod 33(1):200–204. CrossRefGoogle Scholar
  57. Rabetafika HN, Bchir B, Blecker C, Richel A (2014) Fractionation of apple by-products as source of new ingredients: current situation and perspectives. Trends Food Sci Technol 40(1):99–114. CrossRefGoogle Scholar
  58. Ranjan A, Khanna S, Moholkar VS (2013) Feasibility of rice straw as alternate substrate for biobutanol production. Appl Energy 103:32–38 CrossRefGoogle Scholar
  59. RFF (2015) 2015 ethanol industry outlook. The Renewable Fuels Foundation. http://
  60. Rincón LE, Jaramillo JJ, Cardona CA (2014) Comparison of feedstocks and technologies for biodiesel production: an environmental and techno-economic evaluation. Renew Energy 69:479–487. CrossRefGoogle Scholar
  61. Sarkar A (2009) Alfalfa in molecular farming. In: Sarkar A (ed) Molecular farming. Discovery Publishing House Pvt. Limited, New Delhi, pp 310–320Google Scholar
  62. Scarlat N, Dallemand JF, Monforti-Ferrario F, Banja M, Motola V (2015a) Renewable energy policy framework and bioenergy contribution in the European Union – an overview from national renewable energy action plans and progress reports. Renew Sustain Energy Rev 51:969–985. CrossRefGoogle Scholar
  63. Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V (2015b) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34. CrossRefGoogle Scholar
  64. Schenk PM, Sky R, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. CrossRefGoogle Scholar
  65. Schnitzer M, Monreal CM, Powell EE (2013) Wheat straw biomass: a resource for high-value chemicals. J Environ Sci Health B 49(1):51–67. CrossRefGoogle Scholar
  66. Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M et al (2003) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7(3–4):117–146. CrossRefGoogle Scholar
  67. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416. CrossRefPubMedGoogle Scholar
  68. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580. CrossRefPubMedGoogle Scholar
  69. Small E (2011) The economic importance of medicago. In: Small E (ed) Alfalfa and relatives: evolution and classification of Medicago. NRC Press, Ottawa, pp 5–14Google Scholar
  70. Suntana AS, Vogt KA, Turnblom EC, Upadhye R (2009) Bio-methanol potential in Indonesia: forest biomass as a source of bioenergy that reduces carbon emissions. Appl Energy 86:S215–S221. CrossRefGoogle Scholar
  71. Swapna M, Srivastava S (2012) Molecular marker applications for improving sugar content in sugarcane. Springer Briefs Plant Sci:1–49. CrossRefGoogle Scholar
  72. Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15(4):1918–1927. CrossRefGoogle Scholar
  73. Tukacs-Hájos A, Pap B, Maróti G, Szendefy J, Szabó P, Rétfalvi T (2014) Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp. Bioresour Technol 166:288–294. CrossRefPubMedGoogle Scholar
  74. U.S. Department of Energy (2011) U.S. Billion-Ton update. Biomass supply for a bioenergy and bioproducts industry. U.S. Department of Energy, Washington, DC. CrossRefGoogle Scholar
  75. Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99(6):1665. CrossRefGoogle Scholar
  76. Wilhelm WW, Hess JR, Karlen DL, Johnson JMF, Muth DJ, Baker JM et al (2010) Balancing limiting factors & economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Ind Biotechnol 6(5):271–287. CrossRefGoogle Scholar
  77. Zheng Y, Lee C, Yu C, Cheng YS, Zhang R, Jenkins BM, VanderGheynst JS (2013) Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl Energy 105:1–7. CrossRefGoogle Scholar
  78. Zhou S, Runge TM (2015) Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing. Bioresour Technol 193:286–292 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hossein Zahedi
    • 1
  1. 1.Department of Agriculture, Eslamshahr BranchIslamic Azad UniversityEslamshahrIran

Personalised recommendations