Skip to main content

The Beginning: Artin’s Thesis

  • Chapter
  • First Online:
  • 1169 Accesses

Part of the book series: Lecture Notes in Mathematics ((HISTORYMS,volume 2222))

Abstract

Emil Artin (1898–1962) was born in Vienna. He was brought up in Reichenberg, a German speaking town in Northern Bohemia belonging to the Austro-Hungarian empire. (The town is now called Liberec, in the Czech Republic). In 1916 he enrolled at the University of Vienna where, among others, he attended a lecture course by Ph. Furtwängler . After one semester of study he was drafted to the army. In January 1919 he entered the University of Leipzig. I have taken this information from Artin’s own hand-written vita that he submitted together with his thesis to the Faculty at Leipzig University. There in June 1921 he obtained his Ph.D. with Herglotz as his thesis advisor.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The documents for Artin’s Ph.D. are kept in the archive of the University of Leipzig.

  2. 2.

    I am obliged to Frau Dr. Peter from the University of Leipzig for sending me the lecture announcements of the years 1918–1921.

  3. 3.

    I am indebted to Franz Lemmermeyer for pointing out Kühne’s results to me. Kühne (1867–1907) had obtained his Ph.D. in the year 1892 at the University of Berlin. He was a teacher at the technical school in Dortmund. It would be desirable to obtain more biographic information.

  4. 4.

    For the moment, while discussing Artin’s thesis I am denoting the prime ideals of R by gothic letters \(\mathfrak {p}\) since the latin capital P has been used already for prime polynomials in K[x]. Later I will switch again to the notation introduced in Sect. 2.1 where latin letters like P, Q etc. denote primes of F.

  5. 5.

    I have mentioned Kornblum’s paper already, see page 15. The young Kornblum had been a Ph.D. student of Landau in Göttingen. He died in early World War I. The manuscript of his Ph.D. thesis had been almost completed; it was edited and commented by his academic teacher Landau and published 1919 in the newly founded Mathematische Zeitschrift. Artin cites Kornblum, and he points out that his (Artin’s) results on the number of prime polynomials in an arithmetic progression are essentially stronger than Kornblum’s.

  6. 6.

    Constance Reid reports in her book [Rei76] that Herglotz had little contact with his students. If this was the case then it seems that his relation to Artin was an exception.

  7. 7.

    I would like to use this opportunity to point out that it was Blaschke, the first mathematician at the newly founded University of Hamburg, who succeeded to raise this place within a few years to one of the leading mathematical centers in Germany. He did this through a careful Berufungspolitik. The Hamburg Mathematical Seminar in its first decades is a good example that mathematical excellence cannot be created by more money or more positions only, but that the decisive point is to attract excellent people.

  8. 8.

    There is a clash of notation in the mathematical literature, and also in this book. In Analysis the greek letter “π” is used to denote the real number which is half of the circumference of the unit circle. (See formula (3.9) on page 26). In the present context “π” denotes an algebraic number, namely a factor of p in an imaginary quadratic number field. Later when I will discuss Hasse’s theory of complex multiplication in characteristic p the letter “π” will denote the Frobenius operator. (See Sect. 7.4.4). I believe it will always be clear from the context which “π” is meant at the time.

  9. 9.

    The function sin lemn is defined as the inverse function of \(\int _{0}^{x}\frac {dx}{\sqrt {1-x^{4}}}\) , and accordingly cos lemn by means of (3.21).

References

  1. E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. Jahrbuch der Philosophischen Fakultät zu Leipzig 1921, 157–165 (1921)

    MATH  Google Scholar 

  2. E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen I, II. Math. Zeitschr. 19, 153–206, 207–246 (1924)

    Article  Google Scholar 

  3. E. Artin, The Collected Papers of Emil Artin, ed. by S. Lang, J.T. Tate (Addison-Wesley, Reading, MA, 1965). XVI+560 pp.

    Google Scholar 

  4. E. Artin, O. Schreier, Eine Kennzeichnung der reell abgeschlossenen Körper. Abh. Math. Semin. Univ. Hamburg 5, 225–231 (1927)

    Article  Google Scholar 

  5. E. Artin, G. Whaples, Axiomatic characterization of fields by the product formula for valuations. Bull. Am. Math. Soc. 51, 469–492 (1945)

    Article  MathSciNet  Google Scholar 

  6. R. Dedekind, Abriss einer Teorie der höheren Kongruenzen in Bezug auf einen reelen Primzahl-Modulus. J. Reine Angew. Math. 54, 1–26 (1857). Nachdruck in Gesammelte mathematische Werke, Erster Band, V, pp. 40–67

    Google Scholar 

  7. M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Semin. Univ. Hamburg 14, 197–272 (1941)

    Article  Google Scholar 

  8. H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math. 172, 151–182 (1934)

    MATH  Google Scholar 

  9. R. Dedekind, H. Weber, Theorie der algebraischen Funktionen einer Veränderlichen. J. Reine Angew. Math. 92, 181–290 (1882)

    MathSciNet  MATH  Google Scholar 

  10. G. Frei, F. Lemmermeyer, P. Roquette, (eds.), Emil Artin and Helmut Hasse. Their Correspondence 1923–1958 English version, revised and enlarged. Contributions in Mathematical and Computational Science, vol. 5 (Springer Basel, Cham, 2014) X + 484 pp.

    MATH  Google Scholar 

  11. G. Frei, On the history of the artin reciprocity law in abelian extensions of algebraic number fields: How Artin was led to his reciprocity law, in The Legacy of Niels Henrik Abel. The Abel Bicentennial, Oslo 2002, ed. by O.A. Laudal, R. Piene (Springer, Berlin, 2004)

    Chapter  Google Scholar 

  12. H. Hasse, Riemannsche Vermutung bei den F.K.Schmidtschen Kongruenzzetafunktionen. Jahresber. Dtsch. Math.-Ver. 44, 2.Abt., 44 (1934)

    Google Scholar 

  13. H. Hasse, Theorie der relativ–zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper. J. Reine Angew. Math. 172, 37–54 (1934)

    MATH  Google Scholar 

  14. G. Herglotz, Zur letzten Eintragung im Gaußschen Tagebuch. Leipz. Ber. 73, 271–276 (1921). Ges. Schriften, pp. 415–420

    Google Scholar 

  15. G. Herglotz, Gesammelte Schriften. Herausgegeben im Auftrage der Akademie der Wissenschaften in Göttingen von Hans Schwerdtfeger. Göttingen: Vandenhoeck & Ruprecht. XL, 652 S. DM 128.00 (1979)

    Google Scholar 

  16. E. Jacobsthal, Über die Darstellung der Primzahlen der Form 4n+1 als Summe zweier Quadrate. J. Reine Angew. Math. 132, 238–246 (1907)

    MathSciNet  MATH  Google Scholar 

  17. H. Kornblum, Über die Primfunktionen in einer arithmetischen Progression. Math. Z. 5, 100–111 (1919)

    Article  MathSciNet  Google Scholar 

  18. H. Kühne, Eine Wechselbeziehung zwischen Funktionen mehrerer Unbestimmter, die zu Reziprozitätsgesetzen führt. J. Reine Angew. Math. 124, 121–133 (1902)

    MathSciNet  MATH  Google Scholar 

  19. E. Kummer, Zwei neue Beweise der allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist. J. Reine Angew. Math. 100, 10–50 (1887). Abhandl. Königl. Akademie d. Wissenschaften zu Berlin (1861), pp. 81–122

    Google Scholar 

  20. E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. Leipzig: B. G. Teubner. (1918). VII, 143 pp.

    Google Scholar 

  21. F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein (Springer, Berlin, 2000), XIX, 487 pp.

    Google Scholar 

  22. R.E. MacRae, On unique factorization in certain rings of algebraic functions. J. Algebra 17, 243–261 (1971)

    Article  MathSciNet  Google Scholar 

  23. M.L. Madan, C.S. Queen, Algebraic function fields of class number one. Acta Arith. 20, 423–432 (1972)

    Article  MathSciNet  Google Scholar 

  24. C. Reid, Courant in Göttingen and New York. (Springer, New York, 1976), 314 pp.

    Google Scholar 

  25. P. Roquette, Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts. J. Reine Angew. Math. 191, 199–252 (1953)

    MathSciNet  MATH  Google Scholar 

  26. F.K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Z. 33, 1–32 (1931)

    Google Scholar 

  27. N. Schappacher, Some milestones of lemniscatomy, in Algebraic Geometry. Proceedings of the Bilkent Summer School, Ankara, August 7–19, 1995 (Marcel Dekker, New York, NY, 1997), pp. 257–290

    Google Scholar 

  28. F.K. Schmidt, Zur Zahlentheorie in Körpern von der Charakteristik p. Sitzungsberichte Erlangen 58/59, 159–172 (1926/1927)

    Google Scholar 

  29. E. Steinitz, Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167–309 (1910)

    MathSciNet  MATH  Google Scholar 

  30. P. Ullrich, Emil Artins unveröffentlichte Verallgemeinerung seiner Dissertation. Mitt. Math. Ges. Hamburg 19, 173–194 (2000)

    MathSciNet  MATH  Google Scholar 

  31. H. Weber, Lehrbuch der Algebra. Dritter Band: Elliptische Funktionen und algebraische Zahlen., volume 3. Friedr. Vieweg u. Sohn, Braunschweig, 1908. XVI, 733 pp.

    Google Scholar 

  32. A. Weil, Review: the collected papers of Emil Artin, in Collected Papers, Vol. III (1964–1978), ed, by A. Weil, (1979), pp. 237–238

    Google Scholar 

  33. B. Weis, H.G. Zimmer, Artins Theorie der quadratischen Kongruenzfunktionenkörper und ihre Anwendung auf die Berechnung der Einheiten- und Klassengruppen. (Artin’s theory of quadratic congruence function fields and their application to the calculation of unit und class groups). Mitt. Math. Ges. Hamburg 12(2), 261–286 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roquette, P. (2018). The Beginning: Artin’s Thesis. In: The Riemann Hypothesis in Characteristic p in Historical Perspective. Lecture Notes in Mathematics(), vol 2222. Springer, Cham. https://doi.org/10.1007/978-3-319-99067-5_3

Download citation

Publish with us

Policies and ethics