Skip to main content

A Comprehensive Survey on Architecture for Big Data Processing in Mobile Edge Computing Environments

  • Chapter
  • First Online:
Edge Computing

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

With the exponential growth of smartphones, the growth of mobile traffic has also increased dramatically. With this, there has been also increase in the data involved – which is big data. A large part of big data is most valuable when it is analyzed quickly as it is generated. There is a need for processing continuous data streams under very short delays. Recently, frameworks and architectures have been proposed for carrying out data stream processing at the edge of the network using constrained resources. This chapter aims to present a comprehensive survey of the framework, architecture, and applications areas in the area of mobile edge computing. It also discusses some of the challenges and related existing solutions as well. It also provides a survey of the state-of-the-art mobile edge computing research with the focus on deep learning as a technique used for reliable and secure deployment of MEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. AL-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Sur. Tutorials 17, 2347–2376 (2015)

    Article  Google Scholar 

  2. M. Peng, K. Zhang, Recent advances in fog radio access networks: performance analysis and radio resource allocation. IEEE Access J. 4, 5003–5009 (2016)

    Article  Google Scholar 

  3. CISCO, The internet of things how the next evolution of the Internet is changing everything, white paper (2017)

    Google Scholar 

  4. C. Systems, Cisco visual networking index: global mobile data traffic forecast update, 2015–2020 white paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

  5. M. Chiang, T. Zhang, Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3, 854–864 (2016)

    Article  Google Scholar 

  6. T.X. Tran, A. Hajisami, P. Pandey, D. Pompili, Collaborative mobile edge computing in 5G networks: new paradigms, scenarios and challenges. IEEE Commun. Mag, Special Issue on Fog Computing and Networking, 1–7 (2017)

    Google Scholar 

  7. Mobile C, C-RAN: the road towards green RAN. White paper (2011)

    Google Scholar 

  8. Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge computing a key technology towards 5G. ETSI White Paper, vol. 11 (2015)

    Google Scholar 

  9. Intel and Siemens Networks, Increasing mobile operators’ value proposition with edge computing. Technical Brief (2013)

    Google Scholar 

  10. 5G Amricas, Understanding information centric networking and mobile edge computing (2016). http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf

  11. ITU, Work Plan, timeline, process and deliverables for the future development of IMT (2015)

    Google Scholar 

  12. ITU, High level 5G architecture. Network softwarization, gaps (2013). http://www.itu.int/en/ITU-T/focusgroups/imt-2020/Pages/default.aspx

  13. ETSI, 5G – the 5G infrastructure public private partnership: the next generation of communication networks and services (2015)

    Google Scholar 

  14. ETSI, Mobile edge computing – introductory technical whitepaper (2014)

    Google Scholar 

  15. Intel, Real-world impact of mobile edge computing. White paper (2016)

    Google Scholar 

  16. S. Yi, C. Li, Q. Li, A survey of fog computing: concepts, applications and issues, in Proceedings of the 2015 Workshop on Mobile Big Data, ACM, New York, 2015. pp. 37–42

    Google Scholar 

  17. Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, E. Benkhelifa, Sdmec: software defined system for mobile edge computing, in IEEE International Conference on Cloud Engineering Workshop (IC2EW), April 2016, pp. 88–93

    Google Scholar 

  18. M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, Mobile edge computing introductory technical white paper. White paper. Mobile Edge Computing (MEC) industry initiative (2014)

    Google Scholar 

  19. C.K. Park, Performance for radio access network in mobile backhaul network. J. Inst. Internet. Broadcast. Commun. 12(6), 297–302 (2012)

    Article  Google Scholar 

  20. A.H. Khan, M.A. Qadeer, J.A. Ansari, S.Waheed, 4G as a next generation wireless network, in Future Computer and Communication ICFCC 2009, 2009, pp. 334–338

    Google Scholar 

  21. CommVerge, Radio Access Network (RAN) Optimization (2016). Available: http://www.commverge.com/Solutions/SubscribersServicesManagement/RANOptimization/tabid/174/Default.aspx

  22. J. Wu, Z. Zhang, Y. Hong, Y. Wen, Cloud radio access network (C-RAN): a primer. IEEE Netw. 29(1), 35–41 (2015)

    Article  Google Scholar 

  23. Y. Liu, M.J. Lee, Y. Zheng, Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Trans. Mob. Comput. 15(10), 2398–2410 (2016)

    Article  Google Scholar 

  24. F. Akhbar, V. Chang, Y. Yao, V.M. Munoz, Outlook on moving of computing services towards the data sources. Int. J. Inf. Manag. 36, 645–652 (2016)

    Article  Google Scholar 

  25. C.S. Li, F. Darema, V. Chang, Distributed behavior model orchestration in cognitive internet of things solution. Enterp. Inf. Syst. (2017). https://doi.org/10.1080/17517575.2017.1355984

    Article  Google Scholar 

  26. M. Mital, V. Chang, P. Choudhary, A. Pani, Z. Sun, Adoption of cloud based internet of things in India: a multiple theory perspective. Int. J. Inf. Manag. (2016). https://doi.org/10.1016/j.ijinfomgt.2016.02.011

  27. International Data Corporation, IDC Reveals Worldwide Internet of Things Predictions for 2015. Press Release (2015)

    Google Scholar 

  28. K. Hong, D. Lillethum, U. Ramachandran, B. Ottenwalder, B. Koldehofe, Mobile fog: a programming model for large-scale applications on the internet of things, in Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing MCC’13, New York, NY, USA, 2013, pp. 15–20. [Online]. Available: http://doi.acm.org/10.1145/2491266.2491270

  29. International I, Computer technology increasingly aids traffic management (2009). http://www.itsinternational.com/categories/detection-monitoring-machine-vision/features/

  30. A.V. Dastjerdi, H. Gupta, R.N. Calheiros, S.K. Ghosh, R. Buyya, Fog computing: principles, architectures and applications. arXiv preprint arXiv:1601.02752 (2016)

    Google Scholar 

  31. Y. Cao, S. Chen, P. Hou, D. Brown, Fast: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation, in IEEE International Conference on Network, Architecture and Storage (NAS), 2015, pp. 2–11

    Google Scholar 

  32. A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, M.J. Blaha, S. Dai, E.S. Ford, C.S. Fox, S. Franco, et al., Heart disease and stroke statistics – 2014 update. Circulation 129(3) (2014)

    Article  Google Scholar 

  33. P.A. Heidenreich, J.G. Trogdon, O.A. Khavjou, J. Butler, K. Dracup, M.D. Ezekowitz, E.A. Finkelstein, Y. Hong, S.C. Johnston, A. Khera, et al., Forecasting the future of cardiovascular disease in the United States a policy statement from the American Heart Association. Circulation 123(8), 933–944 (2011)

    Article  Google Scholar 

  34. V. Stantchev, A. Barnawi, S. Ghulam, J. Schubert, G. Tamm, Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transducers 185(2), 121 (2015)

    Google Scholar 

  35. S. Datta, C. Bonnet, Haerri, Fog computing architecture to enable consumer centric internet of things services, in IEEE International Symposium on Consumer Electronics (ISCE), pp. 1–2

    Google Scholar 

  36. W. Li, Y. Zhao, S. Lu, D. Chen, Mechanisms and challenges on mobility- augmented service provisioning for mobile cloud computing. IEEE Commun. Mag. 53(2), 978–995 (2015)

    Google Scholar 

  37. H. Hromic, D. Le Phuoc, M. Seerano, A. Antonic, I.P. Zarko, C. Hayes, S. Decker, Real time analysis of sensor data for the internet of things by means of clustering and event processing, in Proceedings of the IEEE International Conference on Communications, 2015, pp. 685–691

    Google Scholar 

  38. http://aws.amazon.com

  39. https://azure.microsoft.com/en-gb/

  40. https://appengine.google.com/

  41. B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)

    Article  Google Scholar 

  42. A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, A. Campi, Clouds of virtual machines on edge networks. IEEE Commun. Mag. 51(2), 148–155 (2013)

    Google Scholar 

  43. C. Clark, K. Fraser, S. Hand, G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live migration of virtual machines, in Proceedings of the USENIX Symposium on Networked Systems Design and Implementation (NSDI), Berkley, USA, 2005

    Google Scholar 

  44. M. Habib ur Rehman, P.P. Jayaraman, S.R. Malik, M. Medhat Gaber, RedEdge: a novel architecture for big data processing in mobile edge computing environments. J. Sens. Actuator Netw. 6, 17 (2017)

    Article  Google Scholar 

  45. C.K.S. Leung, R.K. MacKinnon, F. Jiang, Reducing the search space for big data mining for interesting patterns form uncertain data, in IEEE International Conference on Big Data, Washington, DC, USA, 2014, pp. 315–322

    Google Scholar 

  46. A. Stateczny, M. Wlodarczyk-Sielicka, Self-organizing artificial neural networks into hydrographic big data reduction process, in Rough Sets and Intelligent Systems Paradigms, Spirnger, Berlin Germany, 2014, pp. 335–342

    Google Scholar 

  47. A. Ragyanszki, K.Z. Gerlei, A. Suranyi, A. Kelemen, S.J.K. Jensen, I.G. Csizmadia, B. Viskolcz, Big data reduction by fitting mathematical functions: a search for appropriate functions to fit Ramachandran surfaces. Chem. Phys. Lett. 625, 91–97 (2015)

    Article  Google Scholar 

  48. M. Schuster, Speech recognition for mobile devices at Google, in Pacific Rim International Conference on Artificial Intelligence, Springer, 2010, pp. 8–10

    Google Scholar 

  49. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, U. Muller, J. Zhang, et al, End to end learning for self- driving cars. arXiv preprint arXiv:1604.07316 (2016)

    Google Scholar 

  50. Google, Google cloud vision api (2017). https://cloud.google.com/vision. Accessed 11 Nov 2017

  51. Movidius, Movidius neural compute stick (2017). https://developer.movidius.com/. Accessed 11 Nov 2017

  52. M. Chen, U. Challita, W. Saad, C. Yin, M. Debbah, Machine learning for wireless networks with artificial intelligence: a tutorial on neural networks. arXiv preprint arXiv:1710.02913 (2017)

    Google Scholar 

  53. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, MA, 2016)

    MATH  Google Scholar 

  54. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1026–1034

    Google Scholar 

  55. A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. (NIPS) 25, 1097–1105 (2012). Curran Associates Inc

    Google Scholar 

  56. K. Katevas, I. Leontiadis, M. Pielot, J. Serra, Practical processing of mobile sensor data for continual deep learning predictions, in Proceedings of the 1st International Workshop on Deep Learning for mobile systems and applications, NY, USA, 2017

    Google Scholar 

  57. S. Yao, S. Hu, Y. Zhao, A. Zhang, T. Abdelzaher, DeepSense: a unified deep learning framework for time-series mobile sensing data processing, in International World Wide Web Conference Committee (IW3C2). Creative Commons CC BY, 2017

    Google Scholar 

  58. A. Graves, Generating sequences with recurrent neural networks. ArXiv:1308.0850 (2013)

    Google Scholar 

  59. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. arXiv:1512.03385 (2015)

    Google Scholar 

  60. J. Donahue, A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, T. Darell, Long-term recurrent convolutional networks for visual recognition and description, in CVPR, 2015

    Google Scholar 

  61. K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber, LSTM: a search space odyssey. arXiv:1503.04069 (2015)

    Google Scholar 

  62. N. Srivastava, R.R. Salakhutdinov, Multilodal learning with deep Boltzmann machines, in NIPS, 2012

    Google Scholar 

  63. S. Bhattacharya, N.D. Lane, From smart to deep: Robust activity recognition on smartwatches using deep learning, in PerCom Workshops, 2016

    Google Scholar 

  64. V. Radu, N.D. Lane, S. Bhattacharya, C. Mascolo, M.K. Marina, F. Kawsar, Towards multimodal deep learning for activity recognition on mobile devices, in UbiComp: Adjunct, 2016

    Google Scholar 

  65. D. Figo, P.C. Diniz, D.R. Ferreira, J.M. Cardoso, Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquit. Comput 14, 645–662 (2010)

    Article  Google Scholar 

  66. C.-Y. Li, C.-H. Yen, K.C. Wang, C.-W. You, S.-Y. Lau, C.C.-H. Chen, P. Huang, H.-H. Chu, Bioscope: an extensible bandage system for facilitating data collection in nursing assessments, in UbiComp, 2014

    Google Scholar 

  67. E. Miluzzo, A. Varshavsky, S. Balakrishnan, R.R. Choudhury, Tapprints: your finger taps have fingerprints, in MobiSys, 2012

    Google Scholar 

  68. W.D. Fisher, Machine learning for the automatic detection of anomalous events, PhD dissertation, Colorado School of Mines, 2017, pp. 173

    Google Scholar 

  69. J. Laiho, M. Kylvaja, A. Hoglund, Utilization of advanced analysis methods in UMTS networks, in IEEE Vehicular Technology Conference, Birmingham, USA, 2002, pp. 726730

    Google Scholar 

  70. J. Laiho, K. Raivio, P. Lehtimaki, K. Hatonen, O. Simula, Advanced analysis methods for 3G cellular networks. IEEE Trans. Wirel. Commun. 4(3), 930942 (2005)

    Article  Google Scholar 

  71. A.J. Hoglund, K. Hatonen, A.S. Sorvari, A computer host based user anomaly detection system using the self-organizing map, in IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 5, Italy, 2005, pp. 411416

    Google Scholar 

  72. P. Lehtimaki, K. Raivio, A SOM based approach for visualization of GSM network performance data, in International Symposium on Intelligent Data Analysis, Madrin, Spain, 2005

    Google Scholar 

  73. G. Chen, S.A. Jaradat, N. Banerjee, T.S. Tanaka, M.S. Ko, M.Q. Zhang, Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data. Stat. Sin. 12(1), 241–262 (2002)

    MathSciNet  MATH  Google Scholar 

  74. C.S. Hilas, P.A. Mastorocostas, An application of supervised and unsupervised learning approaches to telecommunications fraud detection. Knowl. Based Syst. 21(7), 721–726 (2008)

    Article  Google Scholar 

  75. J.H. Ward Jr., Hierarchical grouping to optimize an objective function. J. Am. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  76. J. You, Research of wireless network fault diagnosis based on Bayesian networks, in Second International Symposium on Knowledge Acquisition and Modeling, vol. 3, 2009, pp. 59–64

    Google Scholar 

  77. I. Burguera, U. Zurutuza, S. Nadjm-Tehrani, Crowdroid: behavior-based malware detection system for android, in ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, ACM, 2011, pp. 15–26

    Google Scholar 

  78. G. Dini, F. Martinelli, A. Saracino, D. Sgandurra, Madam: a multi-level anomaly detector for android malware, in Computer Network Security, 2012, pp. 240–253

    Google Scholar 

  79. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens, Drebin: effective and explainable detection of android malware in your pocket, in NDSS, 2014

    Google Scholar 

  80. F. Al-Turjman, S. Alturjman, Confidential smart-sensing framework in the IoT era. J Supercomput 74(10), 5187–5198 (2018)

    Article  Google Scholar 

  81. M. Lindorfer, M. Neugschwandtner, C. Platzer, Marvin: efficient and comprehensive mobile app classification through static and dynamic analysis, in 39th IEEE Annual Computer Software and Applications Conference (COMPSAC), vol. 2, IEEE, 2015, pp. 422–433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maninder Jeet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, M.J. (2019). A Comprehensive Survey on Architecture for Big Data Processing in Mobile Edge Computing Environments. In: Al-Turjman, F. (eds) Edge Computing. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-99061-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99061-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99060-6

  • Online ISBN: 978-3-319-99061-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics