Skip to main content

Quantum Thermodynamics of Nanoscale Thermoelectrics and Electronic Devices

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

This chapter is intended as a short introduction to electron flow in nanostructures. Its aim is to provide a brief overview of this topic for people who are interested in the thermodynamics of quantum systems, but know little about nanostructures. We particularly emphasize devices that work in the steady-state, such as simple thermoelectrics, but also mention cyclically driven heat engines. We do not aim to be either complete or rigorous, but use a few pages to outline some of the main ideas in the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The negative sign in P is because we take the electric current I to be positive when it flows from the reservoir at bias V to the reservoir at zero bias. Then I has the same sign as V when it flows “downhill” (from a region of higher bias to one of lower bias) turning electrical power into Joule heating. This means that if the device is to generate power, then I must have the opposite sign to V, so it is pushing electrical current “uphill”.

  2. 2.

    In Landauer-Büttiker scattering theory, the mesoscopic electronic device is viewed as a scatterer onto which electronic wavefunctions, incoming from the leads, impinge and are transmitted or reflected. This well-known powerful approach is particularly useful for systems with weak Coulomb interaction and underlies the reasoning of various sections of this chapter. Details can be found in various text books, see for example [18,19,20].

  3. 3.

    We know from the textbook problem of a quantum particle hitting a barrier, that the transmission probability will be a smooth function of energy (going from zero at low energies to one at high energies), because the solution of the wave equation allows for tunnelling through the barrier.

  4. 4.

    The Seebeck coefficient S is often called the thermopower, even though it does not have either the meaning or the units of power.

  5. 5.

    In some special cases, one can construct a more exotic linear response theory when \(k_\mathrm{B}\Delta T\) or eV are small compared to an energy scale which is not temperature.

  6. 6.

    There is ambiguity in the literature about the sign of S. One can choose either sign, as long as one is consistent.

  7. 7.

    This simple relation is valid only if the direct capacitive coupling between the upper dots (which tunnel-couple to the hot and cold reservoirs) is so strong that they cannot be occupied simultaneously. Note however, that the effects described here continue to exist also in the presence of a smaller capacitive coupling, \(U_\text {HC}\sim U_\text {MH},U_\text {MC}\).

  8. 8.

    The thermoelectric response measured in a series of terminals has been used to probe how energy relaxation takes place along the edge, involving an elegant demonstration of chirality [25, 26].

References

  1. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    Google Scholar 

  2. H. van Houten, L.W. Molenkamp, C.W.J. Beenakker, C.T. Foxon, Thermo-electric properties of quantum point contacts. Semicond. Sci. Technol. 7(3B), B215 (1992). https://doi.org/10.1088/0268-1242/7/3B/052

  3. J. Pekola, Trends in thermometry. J. Low Temp. Phys. 135(5), 723–744 (2004). https://doi.org/10.1023/B:JOLT.0000029516.18146.42

  4. O. Bourgeois, S.E. Skipetrov, F. Ong, J. Chaussy, Attojoule calorimetry of mesoscopic superconducting loops. Phys. Rev. Lett. 94(5), 057007 (2005). https://doi.org/10.1103/PhysRevLett.94.057007

  5. F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78(1), 217–274 (2006). https://doi.org/10.1103/RevModPhys.78.217

  6. P. Reddy, S.-Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315(5818), 1568–1571 (2007). https://doi.org/10.1126/science.1137149

  7. J.S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett. 9(5), 601–604 (2009). https://doi.org/10.1021/nl803844j

  8. A. Mavalankar, S.J. Chorley, J. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, C.G. Smith, A non-invasive electron thermometer based on charge sensing of a quantum dot. Appl. Phys. Lett. 103(13), 133116 (2013). https://doi.org/10.1063/1.4823703

  9. S. Jezouin, F.D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, Y. Jin, F. Pierre, Quantum limit of heat flow across a single electronic channel. Science 342(6158), 601–604 (2013). https://doi.org/10.1126/science.1241912

  10. Y. Kim, W. Jeong, K. Kim, W. Lee, P. Reddy, Electrostatic control of thermoelectricity in molecular junctions. Nat. Nanotechnol. 9(11), 881–885 (2014). https://doi.org/10.1038/nnano.2014.209

  11. L.B. Wang, O.-P. Saira, J.P. Pekola, Fast thermometry with a proximity Josephson junction. Appl. Phys. Lett. 112(1), 013105 (2018). https://doi.org/10.1063/1.5010236

  12. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017). https://doi.org/10.1016/j.physrep.2017.05.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. T. Ihn, Semiconductor Nanostructures (Oxford University Press, Oxford, 2009). https://doi.org/10.1093/acprof:oso/9780199534425.001.0001

  14. Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, Cambridge, 2009). https://doi.org/10.1017/CBO9780511626906

  15. B. Karimi, J.P. Pekola, M. Campisi, R. Fazio, Coupled qubits as a quantum heat switch. Quantum Sci. Tech. 2(4), 044007 (2017). https://doi.org/10.1088/2058-9565/aa8330

  16. N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85(5), 051117 (2012). https://doi.org/10.1103/PhysRevE.85.051117

  17. P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction. Phys. Rev. B 94(23), 235420 (2016). https://doi.org/10.1103/PhysRevB.94.235420

  18. M.V. Moskalets, Scattering Matrix Approach to Non-Stationary Quantum Transport (World Scientific Publishing Company. Singapore (2011). https://doi.org/10.1142/p822

    Article  Google Scholar 

  19. S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  20. T.T. Heikkilä, The Physics of Nanoelectronics, (Oxford University Press, Oxford, 2013)

    Google Scholar 

  21. U. Sivan, Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys. Rev. B 33(1), 551–558 (1986). https://doi.org/10.1103/PhysRevB.33.551

  22. P.N. Butcher, Thermal and electrical transport formalism for electronic microstructures with many terminals. J. Phys. Condens. Matter 2(22), 4869 (1990). https://doi.org/10.1088/0953-8984/2/22/008

  23. F. Ronetti, L. Vannucci, G. Dolcetto, M. Carrega, M. Sassetti, Spin-thermoelectric transport induced by interactions and spin-flip processes in two-dimensional topological insulators. Phys. Rev. B 93(16), 165414 (2016). https://doi.org/10.1103/PhysRevB.93.165414

  24. S.-Y. Hwang, P. Burset, B. Sothmann, Odd-frequency superconductivity revealed by thermopower. Phys. Rev. B 98(16), 161408 (2018). https://doi.org/10.1103/PhysRevB.98.161408

  25. G. Granger, J.P. Eisenstein, J.L. Reno, Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102(8), 086803 (2009). https://doi.org/10.1103/PhysRevLett.102.086803

  26. S.-G. Nam, E.H. Hwang, H.-J. Lee, Thermoelectric detection of chiral heat transport in graphene in the quantum Hall regime. Phys. Rev. Lett. 110(22), 226801 (2013). https://doi.org/10.1103/PhysRevLett.110.226801

  27. B. Sothmann, E.M. Hankiewicz, Fingerprint of topological Andreev bound states in phase-dependent heat transport. Phys. Rev. B 94(8), 081407 (2016). https://doi.org/10.1103/PhysRevB.94.081407

  28. S.J. Erlingsson, A. Manolescu, G.A. Nemnes, J.H. Bardarson, D. Sánchez, Reversal of thermoelectric current in tubular nanowires. Phys. Rev. Lett. 119(3), 036804 (2017). https://doi.org/10.1103/PhysRevLett.119.036804

  29. Y. Gross, M. Dolev, M. Heiblum, V. Umansky, D. Mahalu, Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles. Phys. Rev. Lett. 108(22), 226801 (2012). https://doi.org/10.1103/PhysRevLett.108.226801

  30. C. Altimiras, H. le Sueur, U. Gennser, A. Anthore, A. Cavanna, D. Mailly, F. Pierre, Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109(2), 026803 (2012). https://doi.org/10.1103/PhysRevLett.109.026803

  31. M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D.E. Feldman, A. Stern, V. Umansky, Observed quantization of anyonic heat flow. Nature 545(7652), 75–79 (2017). https://doi.org/10.1038/nature22052

  32. J.T. Muhonen, M. Meschke, J.P. Pekola, Micrometre-scale refrigerators. Rep. Prog. Phys. 75(4), 046501 (2012). https://doi.org/10.1088/0034-4885/75/4/046501

  33. B. Sothmann, R. Sánchez, A.N. Jordan, Thermoelectric energy harvesting with quantum dots. Nanotechnology 26(3), 032001 (2015). https://doi.org/10.1088/0957-4484/26/3/032001

  34. F. Haupt, M. Leijnse, H.L. Calvo, L. Classen, J. Splettstoesser, M.R. Wegewijs, Heat, molecular vibrations, and adiabatic driving in non-equilibrium transport through interacting quantum dots. Phys. Status. Solidi B 250(11), 2315–2329 (2013). https://doi.org/10.1002/pssb.201349219

  35. Y. Dubi, M. Di Ventra, Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83(1), 131–155 (2011). https://doi.org/10.1103/RevModPhys.83.131

  36. M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013). https://doi.org/10.1038/nnano.2013.110

    Article  ADS  Google Scholar 

  37. J.P. Bergfield, M.A. Ratner, Forty years of molecular electronics: non-equilibrium heat and charge transport at the nanoscale. Phys. Status Solidi B 250(11), 2249 (2013). https://doi.org/10.1002/pssb.201370573

  38. J.-L. Pichard, R.S. Whitney (ed.), Special issue : mesoscopic thermoelectric phenomena. C. R. Phys. 17(10), 1039–1174 (2016). https://doi.org/10.1016/j.crhy.2016.08.006

  39. M. Di Ventra, Electrical Transport in Nanoscale Systems, (Cambridge University Press, Cambridge, 2008). https://doi.org/10.1017/CBO9780511755606.002

  40. A.E. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Pion Ltd, London, 1958)

    Google Scholar 

  41. H.J. Goldsmid, Introduction to Thermoelectricity, Springer Series in Materials Science, (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-642-00716-3

  42. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca, Raton, 1995). https://doi.org/10.1201/9781420049718

  43. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999). https://doi.org/10.1126/science.285.5428.703

  44. A. Shakouri, M. Zebarjadi, Nanoengineered materials for thermoelectric energy conversion, in Thermal Nanosystems and Nanomaterials, vol. 225, ed. by S. Volz S (2009). https://doi.org/10.1007/978-3-642-04258-4_9

  45. A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Ann. Rev. Mater. Res. 41(1), 399–431 (2011). https://doi.org/10.1146/annurev-matsci-062910-100445

  46. E. Pop, S. Sinha, K.E. Goodson, Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006). https://doi.org/10.1109/JPROC.2006.879794

  47. K. Koumoto, T. Mori, Thermoelectric Nanomaterials: Materials Design and Applications, Springer Series in Materials Science, Band 182 (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-37537-8

  48. E. Maciá, Thermoelectric Materials: Advances and Applications (Pan Stanford, The Netherlands, 2015)

    Google Scholar 

  49. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003). https://doi.org/10.1063/1.1524305

  50. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1(1), 011305 (2014). https://doi.org/10.1063/1.4832615

  51. G.D. Mahan, J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U.S.A 93(15), 7436–7439 (1996). https://doi.org/10.1073/pnas.93.15.7436

  52. T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Reversible quantum brownian heat engines for electrons. Phys. Rev. Lett. 89(11), 116801 (2002). https://doi.org/10.1103/PhysRevLett.89.116801

  53. N. Nakpathomkun, H.Q. Xu, H. Linke, Thermoelectric efficiency at maximum power in low-dimensional systems. Phys. Rev. B 82(23), 235428 (2010). https://doi.org/10.1103/PhysRevB.82.235428

  54. A. Svilans, M. Leijnse, H. Linke, Experiments on the thermoelectric properties of quantum dots. C.R. Phys. 17(10), 1096–1108 (2016). https://doi.org/10.1016/j.crhy.2016.08.002

  55. L. Cui, R. Miao, K. Wang, D. Thompson, L.A. Zotti, J.C. Cuevas, E. Meyhofer, P. Reddy, Peltier cooling in molecular junctions. Nat. Nanotechnol. 13(2), 122–127 (2017). https://doi.org/10.1038/s41565-017-0020-z

  56. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727–12731 (1993a). https://doi.org/10.1103/PhysRevB.47.12727

  57. L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993b). https://doi.org/10.1103/PhysRevB.47.16631

  58. T.E. Humphrey, H. Linke, Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94(9), 096601 (2005). https://doi.org/10.1103/PhysRevLett.94.096601

  59. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8(7), 471 (2013). https://doi.org/10.1038/nnano.2013.129

  60. R.S. Whitney, Most efficient quantum thermoelectric at finite power output. Phys. Rev. Lett. 112(13), 130601 (2014). https://doi.org/10.1103/PhysRevLett.112.130601

  61. R.S. Whitney, Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output. Phys. Rev. B 91(11), 115425 (2015). https://doi.org/10.1103/PhysRevB.91.115425

  62. R.S. Whitney, Quantum coherent three-terminal thermoelectrics: maximum efficiency at given power output. Entropy 18(6), 208 (2016). https://doi.org/10.3390/e18060208

  63. J.B. Pendry, Quantum limits to the flow of information and entropy. J. Phys. A Math. Gen. 16(10), 2161 (1983). https://doi.org/10.1088/0305-4470/16/10/012

  64. I.-J. Chen, A. Burke, A. Svilans, H. Linke, C. Thelander, Thermoelectric power factor limit of a 1D nanowire. Phys. Rev. Lett. 120(17), 177703 (2018). https://doi.org/10.1103/PhysRevLett.120.177703

  65. K. Brandner, U. Seifert, Bound on thermoelectric power in a magnetic field within linear response. Phys. Rev. E 91(1), 012121 (2015). https://doi.org/10.1103/PhysRevE.91.012121

  66. J. Schulenborg, R.B. Saptsov, F. Haupt, J. Splettstoesser, M.R. Wegewijs, Fermion-parity duality and energy relaxation in interacting open systems. Phys. Rev. B 93(8), 081411 (2016). https://doi.org/10.1103/PhysRevB.93.081411

  67. J. Schulenborg, A. Di Marco, J. Vanherck, M.R. Wegewijs, J. Splettstoesser, Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry. Entropy 19(12), 668 (2017). https://doi.org/10.3390/e19120668

  68. D.R. Schmidt, R.J. Schoelkopf, A.N. Cleland, Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93(4), 045901 (2004). https://doi.org/10.1103/PhysRevLett.93.045901

  69. L.M.A. Pascal, H. Courtois, F.W.J. Hekking, Circuit approach to photonic heat transport. Phys. Rev. B 83(12), 125113 (2011). https://doi.org/10.1103/PhysRevB.83.125113

  70. B.L. Zink, A.D. Avery, R. Sultan, D. Bassett, M.R. Pufall, Exploring thermoelectric effects and Wiedemann-Franz violation in magnetic nanostructures via micromachined thermal platforms. Solid State Commun. 150(11), 514–518 (2010). https://doi.org/10.1016/j.ssc.2009.11.003

  71. S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis, A. Frydman, O. Bourgeois, Quantum criticality at the superconductor to insulator transition revealed by specific heat measurements. Nat. Commun. 8, 14464 (2017). https://doi.org/10.1038/ncomms14464

  72. M. Partanen, K.Y. Tan, J. Govenius, R.E. Lake, M.K. Mäkelä, T. Tanttu, M. Möttönen, Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 12(5), 460–464 (2016). https://doi.org/10.1038/nphys3642

  73. R. Sánchez, Correlation-induced refrigeration with superconducting single-electron transistors. Appl. Phys. Lett. 111(22), 223103 (2017). https://doi.org/10.1063/1.5008481

  74. H. Courtois, H.O. Nguyen, C.B. Winkelmann, J.P. Pekola, High-performance electronic cooling with superconducting tunnel junctions. C.R. Phys. 17(10), 1139–1145 (2016). https://doi.org/10.1016/j.crhy.2016.08.010

  75. J.R. Prance, C.G. Smith, J.P. Griffiths, S.J. Chorley, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Electronic refrigeration of a two-dimensional electron gas. Phys. Rev. Lett. 102(14), 146602 (2009). https://doi.org/10.1103/PhysRevLett.102.146602

  76. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, Boston, 1976)

    Google Scholar 

  77. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 64(64), 701 (2001). https://doi.org/10.1088/0034-4885/64/6/201

  78. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79(4), 1217–1265 (2007). https://doi.org/10.1103/RevModPhys.79.1217

  79. J.P. Bird, Electron Transport in Quantum Dots (Springer, New York, 2003). https://doi.org/10.1007/978-1-4615-0437-5

  80. R. Sánchez, M. Büttiker, Optimal energy quanta to current conversion. Phys. Rev. B 83(8), 085428 (2011). https://doi.org/10.1103/PhysRevB.83.085428

  81. H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, L.W. Molenkamp, Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10(10), 854–858 (2015). https://doi.org/10.1038/nnano.2015.176

  82. B. Roche, P. Roulleau, T. Jullien, Y. Jompol, I. Farrer, D.A. Ritchie, D.C. Glattli, Harvesting dissipated energy with a mesoscopic ratchet. Nat. Commun. 6, 6738 (2015). https://doi.org/10.1038/ncomms7738

    Article  ADS  Google Scholar 

  83. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, L. Worschech, Voltage fluctuation to current converter with coulomb-coupled quantum dots. Phys. Rev. Lett. 114(14), 146805 (2015). https://doi.org/10.1103/PhysRevLett.114.146805

  84. R.S. Whitney, R. Sánchez, F. Haupt, J. Splettstoesser, Thermoelectricity without absorbing energy from the heat sources. Phys. E 75, 257–265 (2016). https://doi.org/10.1016/j.physe.2015.09.025

    Article  Google Scholar 

  85. K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45(6), 494–497 (1980). https://doi.org/10.1103/PhysRevLett.45.494

  86. B.I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185–2190 (1982). https://doi.org/10.1103/PhysRevB.25.2185

  87. M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38(14), 9375–9389 (1988a). https://doi.org/10.1103/PhysRevB.38.9375

  88. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas. Rev. Lett. 60(9), 848–850 (1988). https://doi.org/10.1103/PhysRevLett.60.848

  89. M. Büttiker, Quantized transmission of a saddle-point constriction. Phys. Rev. B 41(11), 7906–7909 (Apr 1990). https://doi.org/10.1103/PhysRevB.41.7906

  90. P. Streda, Quantised thermopower of a channel in the ballistic regime. J. Phys. Condens. Matter 1(5), 1025 (1989). https://doi.org/10.1088/0953-8984/1/5/021

  91. L.W. Molenkamp, H. van Houten, C.W.J. Beenakker, R. Eppenga, C.T. Foxon, Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime. Phys. Rev. Lett. 65(8), 1052–1055 (1990). https://doi.org/10.1103/PhysRevLett.65.1052

  92. L.W. Molenkamp, Th. Gravier, H. van Houten, O.J.A. Buijk, M.A.A. Mabesoone, C.T. Foxon, Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett. 68(25), 3765–3768 (1992). https://doi.org/10.1103/PhysRevLett.68.3765

  93. P.P. Hofer, B. Sothmann, Quantum heat engines based on electronic Mach-Zehnder interferometers. Phys. Rev. B 91(19), 195406 (2015). https://doi.org/10.1103/PhysRevB.91.195406

  94. L. Vannucci, F. Ronetti, G. Dolcetto, M. Carrega, M. Sassetti, Interference-induced thermoelectric switching and heat rectification in quantum Hall junctions. Phys. Rev. B 92(7), 075446 (2015). https://doi.org/10.1103/PhysRevB.92.075446

  95. P. Samuelsson, S. Kheradsoud, B. Sothmann, Optimal quantum interference thermoelectric heat engine with edge states. Phys. Rev. Lett. 118(25), 256801 (2017). https://doi.org/10.1103/PhysRevLett.118.256801

  96. J. Stark, K. Brandner, K. Saito, U. Seifert, Classical Nernst engine. Phys. Rev. Lett. 112(14), 140601 (2014). https://doi.org/10.1103/PhysRevLett.112.140601

  97. B. Sothmann, R. Sánchez, A.N. Jordan, Quantum Nernst engines. EPL 107(4), 47003 (2014). https://doi.org/10.1209/0295-5075/107/47003

  98. A.N. Jordan, B. Sothmann, R. Sánchez, M. Büttiker, Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys. Rev. B 87(7), 075312 (2013). https://doi.org/10.1103/PhysRevB.87.075312

  99. S. Donsa, S. Andergassen, K. Held, Double quantum dot as a minimal thermoelectric generator. Phys. Rev. B 89(12), 125103 (2014). https://doi.org/10.1103/PhysRevB.89.125103

  100. R. Sánchez, B. Sothmann, A.N. Jordan, Chiral thermoelectrics with quantum Hall edge states. Phys. Rev. Lett. 114(14), 146801 (2015a). https://doi.org/10.1103/PhysRevLett.114.146801

  101. R. Sánchez, B. Sothmann, A.N. Jordan, Heat diode and engine based on quantum Hall edge states. New J. Phys. 17(7), 075006 (2015b). https://doi.org/10.1088/1367-2630/17/7/075006

  102. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931). https://doi.org/10.1103/PhysRev.37.405

  103. M. Büttiker, Symmetry of electrical conduction. IBM J. Res. Dev. 32(3), 317–334 (1988b). https://doi.org/10.1147/rd.323.0317

  104. A. Mani, C. Benjamin, Helical thermoelectrics and refrigeration. Phys. Rev. E 97(2), 022114 (2018). https://doi.org/10.1103/PhysRevE.97.022114

  105. G. Benenti, K. Saito, G. Casati, Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Phys. Rev. Lett. 106(23), 230602 (2011). https://doi.org/10.1103/PhysRevLett.106.230602

  106. K. Brandner, K. Saito, U. Seifert, Strong bounds on onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Phys. Rev. Lett. 110(7), 070603 (2013). https://doi.org/10.1103/PhysRevLett.110.070603

  107. P. Roura-Bas, L. Arrachea, E. Fradkin, Enhanced thermoelectric response in the fractional quantum Hall effect. Phys. Rev. B 97(8), 081104 (2018). https://doi.org/10.1103/PhysRevB.97.081104

  108. L. Arrachea, M. Moskalets, L. Martin-Moreno, Heat production and energy balance in nanoscale engines driven by time-dependent fields. Phys. Rev. B 75(24), 245420 (2007). https://doi.org/10.1103/PhysRevB.75.245420

  109. M.F. Ludovico, F. Battista, F. von Oppen, L. Arrachea, Adiabatic response and quantum thermoelectrics for ac-driven quantum systems. Phys. Rev. B 93(7), 075136 (2016). https://doi.org/10.1103/PhysRevB.93.075136

  110. A. Bruch, S.V. Kusminskiy, G. Refael, F. von Oppen, An interacting adiabatic quantum motor. Phys. Rev. B 97(19), 195411 (2018). https://doi.org/10.1103/PhysRevB.97.195411

  111. H.L. Calvo, F.D. Ribetto, R.A. Bustos-Marún, Real-time diagrammatic approach to current-induced forces: application to quantum-dot based nanomotors. Phys. Rev. B 96(16), 165309 (2017). https://doi.org/10.1103/PhysRevB.96.165309

  112. B. Karimi, J.P. Pekola, Otto refrigerator based on a superconducting qubit: classical and quantum performance. Phys. Rev. B 94(18), 184503 (2016). https://doi.org/10.1103/PhysRevB.94.184503

  113. J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine with a single electron. Proc. Natl. Acad. Sci. U.S.A. 111(38), 13786–13789 (2014). https://doi.org/10.1073/pnas.1406966111

  114. J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115(26), 260602 (2015). https://doi.org/10.1103/PhysRevLett.115.260602

  115. S. Juergens, F. Haupt, M. Moskalets, J. Splettstoesser, Thermoelectric performance of a driven double quantum dot. Phys. Rev. B 87(24), 245423 (2013). https://doi.org/10.1103/PhysRevB.87.245423

  116. H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret, Single-electron pump based on charging effects. EPL 17(3), 249 (1992). https://doi.org/10.1209/0295-5075/17/3/011

  117. S.J. Chorley, J. Frake, C.G. Smith, G.A.C. Jones, M.R. Buitelaar, Quantized charge pumping through a carbon nanotube double quantum dot. Appl. Phys. Lett. 100(14), 143104 (2012). https://doi.org/10.1063/1.3700967

  118. B. Roche, R.-P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez, M. Vinet, M. Sanquer, J. Splettstoesser, X. Jehl, A two-atom electron pump. Nat. Commun. 4, 1581 (2013). https://doi.org/10.1038/ncomms2544

  119. M. Josefsson, A. Svilans, A.M. Burke, E.A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, H. Linke, A quantum-dot heat engine operated close to thermodynamic efficiency limits. Nat. Nanotechnol (2017). https://doi.org/10.1038/s41565-018-0200-5

  120. C. Bergenfeldt, P. Samuelsson, B.J. Sothmann, C. Flindt, M. Büttiker, Hybrid microwave-cavity heat engine. Phys. Rev. Lett. 112(7), 076803 (2014). https://doi.org/10.1103/PhysRevLett.112.076803

  121. R. Žitko, J. Mravlje, A. Ramšak, T. Rejec, Spin thermopower in the overscreened Kondo model. New J. Phys. 15(10), 105023 (2013). https://doi.org/10.1088/1367-2630/15/10/105023

  122. D.M. Kennes, D. Schuricht, V. Meden, Efficiency and power of a thermoelectric quantum dot device. EPL 102(5), 57003 (2013). https://doi.org/10.1209/0295-5075/102/57003

  123. T.A. Costi, V. Zlatić, Thermoelectric transport through strongly correlated quantum dots. Phys. Rev. B 81(23), 235127 (2010). https://doi.org/10.1103/PhysRevB.81.235127

  124. P. Strasberg, G. Schaller, N. Lambert, T. Brandes, Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction. New J. Phys. 18(7), 073007 (2016). https://doi.org/10.1088/1367-2630/18/7/073007

  125. R.S. Whitney, Non-Markovian quantum thermodynamics: laws and fluctuation theorems. Phys. Rev. B 98, 085415 (2016). https://doi.org/10.1103/PhysRevB.98.085415

Download references

Acknowledgements

We acknowledge the support of the COST Action MP1209 “Thermodynamics in the quantum regime” (2013-2017), which enabled us to meet regularly to learn about and discuss much of the physics presented in this chapter. RW acknowledges the financial support of the French National Research Agency’s “Investissement d’avenir” program (ANR-15-IDEX-02) via the Université Grenoble Alpes QuEnG project. RS is supported by the Spanish Ministerio de Economía y Competitividad via the Ramón y Cajal program RYC-2016-20778. JS acknowledges support from the Knut and Alice Wallenberg foundation and from the Swedish VR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Whitney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whitney, R.S., Sánchez, R., Splettstoesser, J. (2018). Quantum Thermodynamics of Nanoscale Thermoelectrics and Electronic Devices. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_7

Download citation

Publish with us

Policies and ethics