Skip to main content

One-Dimensional Atomic Superfluids as a Model System for Quantum Thermodynamics

  • Chapter
  • First Online:
Book cover Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

In this chapter we will present the one-dimensional (1d) quantum degenerate Bose gas (1d superfluid) as a testbed to experimentally illustrate some of the key aspects of quantum thermodynamics. Hard-core bosons in one-dimension are described by the integrable Lieb-Lininger model. Realistic systems, as they can be implemented, are only approximately integrable, and let us investigate the cross over to ‘thermalisation’. They show such fundamental properties as pre-thermalisation, general Gibbs ensembles and light-cone like spreading of de-coherence. On the other hand they are complex enough to illustrate that our limited ability to measure only (local) few-body observables determines the relevant description of the many-body system and its physics. One consequence is the observation of quantum recurrences in systems with thousand of interacting particles. The relaxation observed in 1D superfluids is universal for a large class of many-body systems, those where the relevant physics can be described by a set of ‘long lived’ collective modes. The time window where the ‘close to integrable’ dynamics can be observed is given by the ‘lifetime’ of the quasi-particles associated with the collective modes. Based on these observations one can view (in a quantum field theory sense) a many-body quantum system at T \(=\) 0 as ‘vacuum’ and its excitations as the system to experiment with. This viewpoint leads to a new way to build thermal machines from the quasi-particles in 1D superfluids. We will give examples of how to realise these systems and point to a few interesting questions that might be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Boltzmann, Sitzungsberichte Akademie der Wissenschaften 66, 275 (1872). https://doi.org/10.1142/9781848161337_0015

  2. J.V. Neumann, Z. Phys. 57, 30 (1929). https://doi.org/10.1007/BF01339852

  3. M. Srednicki, Phys. Rev. E 50, 888 (1994). https://doi.org/10.1103/PhysRevE.50.888

  4. M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008). https://doi.org/10.1038/nature06838

  5. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod Phys 83, 863 (2011). https://doi.org/10.1103/RevModPhys.83.863

  6. J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015). https://doi.org/10.1038/nphys3215

  7. C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 56001 (2016). https://doi.org/10.1088/0034-4885/79/5/056001

  8. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A Math. Theor. 49, 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001

  9. L. del Rio, L. Kraemer, R. Renner (2015). arXiv:1511.08818

  10. L. Kofman, A. Linde, A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994). https://doi.org/10.1103/PhysRevLett.73.3195

  11. D. Podolsky, G.N. Felder, L. Kofman, M. Peloso, Phys. Rev. D 73, 023501 (2006). https://doi.org/10.1103/PhysRevD.73.023501

  12. P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001). https://doi.org/10.1016/S0370-2693(01)01069-3

  13. J. Berges, S. Borsányi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004). https://doi.org/10.1103/PhysRevLett.93.142002

  14. M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009). https://doi.org/10.1103/PhysRevLett.103.056403

  15. M. Moeckel, St. Kehrein, New J. Phys. 12, 055016 (2010). https://doi.org/10.1088/1367-2630/12/5/055016

  16. T. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer, F. Cataldini, T. Langen, T. Gasenzer, J. Berges, J. Schmiedmayer, Nature 545, 323 (2017). https://doi.org/10.1038/nature22310

  17. B.P. Lanyon, C. Maier, M. Holzaepfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A.S. Buyskikh, A.J. Daley, M. Cramer, M.B. Plenio, R. Blatt, C.F. Roos, Nat. Phys. 13, 1158 (2017). https://doi.org/10.1038/NPHYS4244

  18. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). https://doi.org/10.1103/RevModPhys.80.885

  19. T. Giamarchi, A.J. Millis, O. Parcollet, H. Saleur, L.F. Cugliandolo, Strongly Interacting Quantum Systems out of Equilibrium: Lecture Notes of the Les Houches Summer School: Volume 99, August 2012, vol. 99 (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780198768166.001.0001

  20. T. Langen, R. Geiger, J. Schmiedmayer, Ann. Rev. Cond. Mat. Phys. 6, 201 (2015). https://doi.org/10.1146/annurev-conmatphys-031214-014548

  21. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2004). https://doi.org/10.1093/acprof:oso/9780198525004.001.0001

  22. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011). https://doi.org/10.1103/RevModPhys.83.1405

  23. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). https://doi.org/10.1103/PhysRevLett.17.1133

  24. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000). https://doi.org/10.1103/PhysRevLett.85.3745

  25. K.V. Kheruntsyan, D.M. Gangardt, P.D. Drummond, G.V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003). https://doi.org/10.1103/PhysRevLett.91.040403

  26. T. Langen, Non-equilibrium dynamics of one-dimensional bose gases, Ph.D. thesis, Vienna University of Technology (2013)

    Google Scholar 

  27. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963). https://doi.org/10.1103/PhysRev.130.1605

  28. E.H. Lieb, Phys. Rev. 130, 1616 (1963). https://doi.org/10.1103/PhysRev.130.1616

  29. C.N. Yang, J. Mat. Phys. 10, 1115 (1969). https://doi.org/10.1063/1.1664947

  30. B. Sutherland, Beautiful Models: 70 Years of Exactly Solved Quantum Many-body Problems (World Scientific, 2004). https://doi.org/10.1142/5552

  31. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Phys. Rev. Lett. 98, (2007). https://doi.org/10.1103/PhysRevLett.98.050405

  32. J.-S. Caux, F.H.L. Essler, Phys. Rev. Lett. 110, 257203 (2013). https://doi.org/10.1103/PhysRevLett.110.257203

  33. L. Tonks, Phys. Rev. 50, 955 (1936). https://doi.org/10.1103/PhysRev.50.955

  34. M. Girardeau, J. Math. Phys. 1, 516 (1960). https://doi.org/10.1063/1.1703687

  35. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998). https://doi.org/10.1103/PhysRevLett.81.938

  36. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429, 277 (2004). https://doi.org/10.1038/nature02530

  37. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004). https://doi.org/10.1126/science.1100700

  38. F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981). https://doi.org/10.1103/PhysRevLett.47.1840

  39. S.-I. Tomonaga, Prog. Theor. Phys. 5, 544 (1950). https://doi.org/10.1143/ptp/5.4.544

  40. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963). https://doi.org/10.1063/1.1704046

  41. D.C. Mattis, E.H. Lieb, J. Math. Phys. 6, 304 (1965). https://doi.org/10.1063/1.1704281

  42. A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84, 1253 (2012). https://doi.org/10.1103/RevModPhys.84.1253

  43. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999). https://doi.org/10.1038/17569

  44. C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X.Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nat. Phys. 7, 76 (2011). https://doi.org/10.1038/nphys2051

  45. Y. Jompol, C. Ford, J. Griffiths, I. Farrer, G. Jones, D. Anderson, D. Ritchie, T. Silk, A. Schofield, Science 325, 597 (2009). https://doi.org/10.1126/science.1171769

  46. V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464, 209 (2010). https://doi.org/10.1038/nature08918

  47. S. Coleman, Phys. Rev. D 11, 2088 (1975). https://doi.org/10.1103/PhysRevD.11.2088

  48. S. Mandelstam, Phys. Rev. D 11, 3026 (1975). https://doi.org/10.1103/PhysRevD.11.3026

  49. W.E. Thirring, Ann. Phys. 3, 91 (1958). https://doi.org/10.1016/0003-4916(58)90015-0

  50. L.D. Faddeev, V.E. Korepin, Phys. Rep. 42, 1 (1978). https://doi.org/10.1016/0370-1573(78)90058-3

  51. J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams (eds.), The Sine-Gordon Model and its Applications, Nonlinear systems and complexity (Springer International Publishing, Switzerland, 2014). https://doi.org/10.1007/978-3-319-06722-3

  52. M.B. Fogel, S.E. Trullinger, A.R. Bishop, J.A. Krumhansl, Phys. Rev. B 15, 1578 (1977). https://doi.org/10.1103/PhysRevB.15.1578

  53. V. Gritsev, A. Polkovnikov, E. Demler, Phys. Rev. B 75, 174511 (2007). https://doi.org/10.1103/PhysRevB.75.174511

  54. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527 (1954), http://cds.cern.ch/record/430016

  55. G.P. Brandino, J.-S. Caux, R.M. Konik, Phys. Rev. X 5, 041043 (2015). https://doi.org/10.1103/PhysRevX.5.041043

  56. I.E. Mazets, Eur. Phys. J. D 65, 43 (2011). https://doi.org/10.1140/epjd/e2010-10637-5

  57. I.E. Mazets, T. Schumm, J. Schmiedmayer, Phys. Rev. Lett. 100, 210403 (2008). https://doi.org/10.1103/PhysRevLett.100.210403

  58. I.E. Mazets, J. Schmiedmayer, Phys. Rev. A 79, 061603 (2009). https://doi.org/10.1103/PhysRevA.79.061603

  59. I.E. Mazets, J. Schmiedmayer, New J. Phys. 12, 055023 (2010). https://doi.org/10.1088/1367-2630/12/5/055023

  60. S. Tan, M. Pustilnik, L.I. Glazman, Phys. Rev. Lett. 105, 090404 (2010). https://doi.org/10.1103/PhysRevLett.105.090404

  61. Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan, B.L. Lev, Phys. Rev. X 8, 021030 (2018). https://doi.org/10.1103/PhysRevX.8.021030

  62. P. Krüger, S. Hofferberth, I.E. Mazets, I. Lesanovsky, J. Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010). https://doi.org/10.1103/PhysRevLett.105.265302

  63. J.-F. Riou, L.A. Zundel, A. Reinhard, D.S. Weiss, Phys. Rev. A 90, 033401 (2014). https://doi.org/10.1103/PhysRevA.90.033401

  64. C. Li, T. Zhou, I. Mazets, H.-P. Stimming, Z. Zhu, Y. Zhai, W. Xiong, X. Zhou, X. Chen, J. Schmiedmayer (2018). arXiv:1804.01969

  65. E. Haller, M. Mark, R. Hart, J.G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, Phys. Rev. Lett. 104, 153203 (2010). https://doi.org/10.1103/PhysRevLett.104.153203

  66. S. Dettmer, D. Hellweg, P. Ryytty, J. Arlt, W. Ertmer, K. Sengstock, D.S. Petrov, G. Shlyapnikov, H. Kreutzmann, L. Santos, M. Lewenstein, Phys. Rev. Lett. 87, 160406 (2001). https://doi.org/10.1103/PhysRevLett.87.160406

  67. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008). https://doi.org/10.1038/nature07000

  68. F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, S. Jochim, Science 332, 336 (2011). https://doi.org/10.1126/science.1201351

  69. T. Kinoshita, T. Wenger, D. Weiss, Nature 440, 900 (2006). https://doi.org/10.1038/nature04693

  70. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). https://doi.org/10.1103/RevModPhys.78.179

  71. R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002). https://doi.org/10.1016/S1049-250X(02)80011-8

  72. J. Reichel, V. Vuletić (eds.), Atom Chips (Wiley, VCH, 2011). https://doi.org/10.1002/9783527633357

  73. S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, J. Schmiedmayer, Nat. Phys. 4, 489 (2008). https://doi.org/10.1038/nphys941

  74. T. Jacqmin, J. Armijo, T. Berrada, K.V. Kheruntsyan, I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011). https://doi.org/10.1103/PhysRevLett.106.230405

  75. R. Schley, A. Berkovitz, S. Rinott, I. Shammass, A. Blumkin, J. Steinhauer, Phy. Rev. Lett. 111, 055301 (2013). https://doi.org/10.1103/PhysRevLett.111.055301

  76. B. Rauer, P. Grišins, I.E. Mazets, T. Schweigler, W. Rohringer, R. Geiger, T. Langen, J. Schmiedmayer, Phys. Rev. Lett. 116, 030402 (2016). https://doi.org/10.1103/PhysRevLett.116.030402

  77. P. Grisins, B. Rauer, T. Langen, J. Schmiedmayer, I.E. Mazets, Phys. Rev. A 93, 033634 (2016). https://doi.org/10.1103/PhysRevA.93.033634

  78. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Kruger, Nat. Phys. 1, 57 (2005). https://doi.org/10.1038/nphys125

  79. S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Nat. Phys. 2, 710 (2006). https://doi.org/10.1038/nphys420

  80. I. Lesanovsky, T. Schumm, S. Hofferberth, L.M. Andersson, P. Krüger, J. Schmiedmayer, Phys. Rev. A 73, 033619 (2006). https://doi.org/10.1103/PhysRevA.73.033619

  81. T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmiedmayer, V. Gritsev, E. Demler, Phys. Rev. Lett. 104, 255302 (2010). https://doi.org/10.1103/PhysRevLett.104.255302

  82. T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, New. J. Phys. 13, 073018 (2011). https://doi.org/10.1088/1367-2630/13/7/073018

  83. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I.E. Mazets, D.A. Smith, E. Demler, J. Schmiedmayer, Science 337, 1318 (2012). https://doi.org/10.1126/science.1224953

  84. J. Estève, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Nature 455, 1216 (2008). https://doi.org/10.1038/nature07332

  85. T. Berrada, S.V. Frank, R. Bücker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, Nat. Commun. 2077 (2013). https://doi.org/10.1038/ncomms3077

  86. U. Hohenester, P.K. Rekdal, A. Borzì, J. Schmiedmayer, Phys. Rev. A 75, 023602 (2007). https://doi.org/10.1103/PhysRevA.75.023602

  87. J. Grond, J. Schmiedmayer, U. Hohenester, Phys. Rev. A 79, 021603 (2009a). https://doi.org/10.1103/PhysRevA.79.021603

  88. J. Grond, G. von Winckel, J. Schmiedmayer, U. Hohenester, Phys. Rev. A 80, 053625 (2009b). https://doi.org/10.1103/PhysRevA.80.053625

  89. W. Ketterle, D. Durfee, D. Stamper-Kurn, Bose-Einstein condensation in atomic gases, in Proceedings of the International School of Physics Enrico Fermi

    Google Scholar 

  90. D.A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, J. Schmiedmayer, Opt. Express 19, 8471 (2011). https://doi.org/10.1364/OE.19.008471

  91. R. Bücker, A. Perrin, S. Manz, T. Betz, C. Koller, T. Plisson, J. Rottmann, T. Schumm, J. Schmiedmayer, New J. Phys. 11, 103039 (2009). https://doi.org/10.1088/1367-2630/11/10/103039

  92. A. Imambekov, I.E. Mazets, D.S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, J. Schmiedmayer, Phys. Rev. A 80, 033604 (2009). https://doi.org/10.1103/PhysRevA.80.033604

  93. S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I.E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, T. Schumm, Phys. Rev. A 81, 031610 (2010). https://doi.org/10.1103/PhysRevA.81.031610

  94. I.E. Mazets, Phys. Rev. A 86, 055603 (2012). https://doi.org/10.1103/PhysRevA.86.055603

  95. J. Schwinger, Proc. Natl. Acad. Sci. 37, 452 (1951a). https://doi.org/10.1073/pnas.37.7.452

  96. J. Schwinger, Proc. Natl. Acad. Sci. 37, 455 (1951b). https://doi.org/10.1073/pnas.37.7.455

  97. T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I.E. Mazets, T. Gasenzer, J. Schmiedmayer, Science 348, 207 (2015b). https://doi.org/10.1126/science.1257026

  98. J. Steinhauer, Nat. Phys. 12, 959 (2016). https://doi.org/10.1038/nphys3863

  99. E. Altman, E. Demler, M.D. Lukin, Phys. Rev. A 70, 013603 (2004). https://doi.org/10.1103/PhysRevA.70.013603

  100. S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, I. Bloch, Nature 434, 481 (2005). https://doi.org/10.1038/nature03500

  101. T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, I. Bloch, Nature 444, 733 (2006). https://doi.org/10.1038/nature05319

  102. T. Jeltes, J.M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, C.I. Westbrook, Nature 445, 402 (2007). https://doi.org/10.1038/nature05513

  103. A. Perrin, R. Bucker, S. Manz, T. Betz, C. Koller, T. Plisson, T. Schumm, J. Schmiedmayer, Nat. Phys. 8, 195 (2012). https://doi.org/10.1038/nphys2212

  104. M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith, J. Schmiedmayer, Phys. Rev. Lett. 110, 090405 (2013). https://doi.org/10.1103/PhysRevLett.110.090405

  105. V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Nat. Phys. 2, 705 (2006). https://doi.org/10.1038/nphys410

  106. A. Polkovnikov, E. Altman, E. Demler, Proc. Natl. Acad. Sci. 103, 6125 (2006). https://doi.org/10.1073/pnas.0510276103

  107. R. Geiger, T. Langen, I. Mazets, J. Schmiedmayer, New J. Phys. 16, 053034 (2014). https://doi.org/10.1088/1367-2630/16/5/053034

  108. P. Calabrese, J. Cardy, Phys. Rev. Lett. 96, 136801 (2006). https://doi.org/10.1103/PhysRevLett.96.136801

  109. E.H. Lieb, D.W. Robinson, Commun. Math. Phys. 28, 251 (1972). https://doi.org/10.1007/BF01645779

  110. C.-L. Hung, V. Gurarie, C. Chin, Science 341, 1213 (2013). https://doi.org/10.1126/science.1237557

  111. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Nat. Phys. 9, 640 (2013). https://doi.org/10.1038/nphys2739

  112. E.T. Jaynes, Phys. Rev. 106, 620 (1957a). https://doi.org/10.1103/PhysRev.106.620

  113. E.T. Jaynes, Phys. Rev. 108, 171 (1957b). https://doi.org/10.1103/PhysRev.108.171

  114. B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, J. Schmiedmayer, Science 359, (2018). https://doi.org/10.1126/science.aan7938

  115. D. Weiss (private communication)

    Google Scholar 

  116. H. Poincaré, Acta Math. 13, 1 (1890). https://doi.org/10.1007/BF02392506

  117. E. Zermelo, Annalen der Physik 293, 485 (1896). https://doi.org/10.1002/andp.18962930314

  118. P. Bocchieri, A. Loinger, Phys. Rev. 107, 337 (1957). https://doi.org/10.1103/PhysRev.107.337

  119. I.C. Percival, J. Math. Phys. 2, 235 (1961). https://doi.org/10.1063/1.1703705

  120. F.W. Cummings, Phys. Rev. 140, A1051 (1965). https://doi.org/10.1103/PhysRev.140.A1051

  121. G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987). https://doi.org/10.1103/PhysRevLett.58.353

  122. M. Greiner, O. Mandel, T. Hänsch, I. Bloch, Nature 419, 51 (2002). https://doi.org/10.1038/nature00968

  123. S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Nature 465, 197 (2010). https://doi.org/10.1038/nature09036

  124. D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, J. Phys. IV France 116, 5 (2004). https://doi.org/10.1051/jp4:2004116001

    Article  Google Scholar 

  125. J. Berges, A. Rothkopf, J. Schmidt, Phys. Rev. Lett. 101, 041603 (2008). https://doi.org/10.1103/PhysRevLett.101.041603

  126. M. Schmidt, S. Erne, B. Nowak, D. Sexty, T. Gasenzer, New J. Phys. 14, 075005 (2012). https://doi.org/10.1088/1367-2630/14/7/075005

  127. B. Nowak, S. Erne, M. Karl, J. Schole, D. Sexty, T. Gasenzer, Strongly interacting quantum systems out of equilibrium. Lecture Notes of the Les Houches Summer School, 99 (2013). arXiv:1302.1448

  128. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International series of monographs on physics (2002). https://doi.org/10.1093/acprof:oso/9780198509233.001.0001

  129. M. Prüfer et al., Observation of universal quantum dynamics far from equilibrium. Nature 563, 217–220 (2018). https://doi.org/10.1038/s41586-018-0659-0

  130. S. Erne, R. Bücker, T. Gasenzer, J. Berges, J. Schmiedmayer, Observation of universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225 (2018). https://doi.org/10.1038/s41586-018-0667-0

  131. L.-C. Ha, L.W. Clark, C.V. Parker, B.M. Anderson, C. Chin, Phys. Rev. Lett. 114, 055301 (2015). https://doi.org/10.1103/PhysRevLett.114.055301

  132. G. Gauthier, I. Lenton, N. McKay Parry, M. Baker, M.J. Davis, H. Rubinsztein-Dunlop, T.W. Neely, Optica 3, 1136 (2016). https://doi.org/10.1364/OPTICA.3.001136

  133. P. Zupancic, P.M. Preiss, R. Ma, A. Lukin, M.E. Tai, M. Rispoli, R. Islam, M. Greiner, Opt. Express 24, 13881 (2016). https://doi.org/10.1364/OE.24.013881

  134. M. Aidelsburger, J.L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, J. Beugnon, Phys. Rev. Lett. 119, 190403 (2017). https://doi.org/10.1103/PhysRevLett.119.190403

  135. A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013). https://doi.org/10.1103/PhysRevLett.110.200406

  136. M. Pezzutto, M. Paternostro, Y. Omar, New J. Phys. 18, 123018 (2016). https://doi.org/10.1088/1367-2630/18/12/123018

  137. P.P. Hofer, M. Perarnau-Llobet, L.D.M. Miranda, G. Haack, R. Silva, J.B. Brask, N. Brunner, New J. Phys. 19, 123037 (2017). https://doi.org/10.1088/1367-2630/aa964f

  138. J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Open Syst. Inf. Dyn. 24, 1740010 (2017). https://doi.org/10.1142/S1230161217400108

  139. R. Uzdin, A. Levy, R. Kosloff, Entropy 18, 124 (2016). https://doi.org/10.3390/e18040124

  140. M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, J. Eisert, Phys. Rev. Lett. 120, 120602 (2018). https://doi.org/10.1103/PhysRevLett.120.120602

  141. S. Seah, S. Nimmrichter, V. Scarani, Phys. Rev. E 98, 012131 (2018). https://doi.org/10.1103/PhysRevE.98.012131

  142. G.-B. Jo, Y. Shin, S. Will, T.A. Pasquini, M. Saba, W. Ketterle, D.E. Pritchard, M. Vengalattore, M. Prentiss, Phys. Rev. Lett. 98, 030407 (2007). https://doi.org/10.1103/PhysRevLett.98.030407

  143. D. Jennings, T. Rudolph, Phys. Rev. E 81, 061130 (2010). https://doi.org/10.1103/PhysRevE.81.061130

  144. S. Jevtic, D. Jennings, T. Rudolph, Phys. Rev. Lett. 108, 110403 (2012). https://doi.org/10.1103/PhysRevLett.108.110403

  145. L. del Rio, A. Hutter, R. Renner, S. Wehner, Phys. Rev. E 94, 022104 (2016). https://doi.org/10.1103/PhysRevE.94.022104

  146. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015). https://doi.org/10.1103/PhysRevX.5.041011

  147. N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014). https://doi.org/10.1103/PhysRevE.89.032115

Download references

Acknowledgements

I would like o thank all my collaborators during the last years for many illuminating discussions, especially the theory in Heidelberg: J. Berges, S. Erne, V. Kasper, and Th. Gasenzer, and my long term collaborators E. Demler and J. Eisert. M. Huber provided invaluable insight into the quantum to classical transition and towards the implementation of thermal machines with 1D superfluids. None of this would have been possible without the fatalistic effort of my group at the Atominstitut, special thanks to I. Mazets for keeping me on track in theoretical matters, T. Langen, B. Rauer and Th. Schweigler for making the experiments work and their deep insight into the related physics and Joao Sabino for help with the manuscript. This work was supported by the FWF through the SFB FoQuS, the DFG-FWF Forschergruppe 2427:Thermal machines in the quantum world and by the EU through the ERC advanced grant Quantum-Relax. JS acknowledges the hospitality of the Erwin Schrödinger Institut in the framework of their thematic program Quantum Paths which enabled many discussions shaping this article. Part of the research reviewed in this chapter was made possible by the COST MP1209 network Thermodynamics in the quantum regime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schmiedmayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmiedmayer, J. (2018). One-Dimensional Atomic Superfluids as a Model System for Quantum Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_34

Download citation

Publish with us

Policies and ethics