Skip to main content

Trade-Off Between Work and Correlations in Quantum Thermodynamics

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Quantum thermodynamics and quantum information are two frameworks for employing quantum mechanical systems for practical tasks, exploiting genuine quantum features to obtain advantages with respect to classical implementations. While appearing disconnected at first, the main resources of these frameworks, work and correlations, have a complicated yet interesting relationship that we examine here. We review the role of correlations in quantum thermodynamics, with a particular focus on the conversion of work into correlations. We provide new insights into the fundamental work cost of correlations and the existence of optimally correlating unitaries, and discuss relevant open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or, more generally, out-of-equilibrium states from which energy can be extracted.

  2. 2.

    We use units where \(\hbar =k_{{{B}}}=1\) throughout.

  3. 3.

    This is one of the most widely used measures of correlations in the context of thermodynamics, which arises quite naturally, due to being a linear function of the von Neumann entropies of the subsystems, and thus directly related to thermodynamical potentials. See also the subsequent discussion.

  4. 4.

    See, e.g., [17] for a pedagogical introduction to entanglement detection via conditional entropies and mutual information.

  5. 5.

    For simplicity here we could consider finite-dimensional systems.

  6. 6.

    Note that the final state need not be entangled.

  7. 7.

    Here, local refers to the collections of subsystems \(A_{1}, \ldots , A_{N}\) and \(B_{1}, \ldots , B_{N}\) for N copies of \(\rho _{{{AB}}}\).

References

  1. F.G.S.L. BrandĂŁo, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, The resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013). https://doi.org/10.1103/PhysRevLett.111.250404

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge). https://doi.org/10.1017/CBO9780511976667.001

  3. M. Horodecki, J. Oppenheim, Quantumness in the context of resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013). https://doi.org/10.1142/S0217979213450197

  4. C. Eltschka, J. Siewert, Quantifying entanglement resources. J. Phys. A: Math. Theor. 47, 424005 (2014). https://doi.org/10.1088/1751-8113/47/42/424005

  5. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, The role of quantum information in thermodynamics – a topical review. J. Phys. A: Math. Theor. 49, 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001

  6. J. Millen, A. Xuereb, Perspective on quantum thermodynamics. New J. Phys. 18, 011002 (2016). https://doi.org/10.1088/1367-2630/18/1/011002

  7. S. Vinjanampathy, J. Anders, Quantum thermodynamics. Contemp. Phys. 57, 1 (2016). https://doi.org/10.1080/00107514.2016.1201896

  8. M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, A. Acín, Thermodynamic cost of creating correlations. New J. Phys. 17, 065008 (2015). https://doi.org/10.1088/1367-2630/17/6/065008

  9. D.E. Bruschi, M. Perarnau-Llobet, N. Friis, K.V. Hovhannisyan, M. Huber, The thermodynamics of creating correlations: Limitations and optimal protocols. Phys. Rev. E 91, 032118 (2015). https://doi.org/10.1103/PhysRevE.91.032118

  10. G.L. Giorgi, S. Campbell, Correlation approach to work extraction from finite quantum systems. J. Phys. B: At. Mol. Opt. Phys. 48, 035501 (2015). https://doi.org/10.1088/0953-4075/48/3/035501

  11. N. Friis, M. Huber, M. Perarnau-Llobet, Energetics of correlations in interacting systems. Phys. Rev. E 93, 042135 (2016). https://doi.org/10.1103/PhysRevE.93.042135

  12. G. Francica, J. Goold, F. Plastina, M. Paternostro, Daemonic ergotropy: enhanced work extraction from quantum correlations. npj Quantum Inf. 3, 12 (2017). https://doi.org/10.1038/s41534-017-0012-8

  13. V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002). https://doi.org/10.1103/RevModPhys.74.197

  14. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957). https://doi.org/10.1103/PhysRev.106.620

  15. N.J. Cerf, C. Adami, Quantum extension of conditional probability. Phys. Rev. A 60, 893 (1999). https://doi.org/10.1103/PhysRevA.60.893

  16. L. Del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61–63 (2011), https://doi.org/10.1038/nature10123

  17. N. Friis, S. Bulusu, R.A. Bertlmann, Geometry of two-qubit states with negative conditional entropy. J. Phys. A: Math. Theor. 50, 125301 (2017). https://doi.org/10.1088/1751-8121/aa5dfd

  18. A. Stokes, P. Deb, A. Beige, Using thermodynamics to identify quantum subsystems. J. Mod. Opt. 64, S7–S19 (2017). https://doi.org/10.1080/09500340.2017.1295108

  19. H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, Local effective dynamics of quantum systems: a generalized approach to work and heat. Europhys. Lett. 83, 30008 (2008). https://doi.org/10.1209/0295-5075/83/30008

  20. J. Teifel, G. Mahler, Autonomous modular quantum systems: contextual Jarzynski relations. Phys. Rev. E 83, 041131 (2011). https://doi.org/10.1103/PhysRevE.83.041131

  21. M.H. Partovi, Entanglement versus Stosszahlansatz: Disappearance of the thermodynamic arrow in a high-correlation environment. Phys. Rev. E 77, 021110 (2008). https://doi.org/10.1103/PhysRevE.77.021110

  22. D. Jennings, T. Rudolph, Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81, 061130 (2010). https://doi.org/10.1103/PhysRevE.81.061130

  23. S. Jevtic, D. Jennings, T. Rudolph, Maximally and minimally correlated states attainable within a closed evolving system. Phys. Rev. Lett. 108, 110403 (2012a). https://doi.org/10.1103/PhysRevLett.108.110403

  24. S. Jevtic, D. Jennings, T. Rudolph, Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012b). https://doi.org/10.1103/PhysRevA.85.052121

  25. F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. U.S.A. 11, 3275–3279 (2015). https://doi.org/10.1073/pnas.1411728112

  26. S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A.T. Rezakhani, Correlations in quantum thermodynamics: Heat, work, and entropy production. Sci. Rep. 6, 35568 (2016). https://doi.org/10.1038/srep35568

  27. M.N. Bera, A. Riera, M. Lewenstein, A. Winter, Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 8, 2180 (2017). https://doi.org/10.1038/s41467-017-02370-x

  28. M.P. MĂĽller, Correlating thermal machines and the second law at the nanoscale. Phys. Rev. X 8, 041051 (2018). https://doi.org/10.1103/PhysRevX.8.041051

  29. L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, in Kinetische Theorie II: Irreversible Prozesse Einführung und Originaltexte (Vieweg+Teubner Verlag, Wiesbaden, 1970) pp. 115–225. https://doi.org/10.1007/978-3-322-84986-1_3

  30. L. Boltzmann, Zu Hrn. Zermelos Abhandlung über die mechanische Erklärung irreversiler Vorgänge (On the mechanical explanation of irreversible processes). Ann. Phys. 60, 392–398 (1897). https://doi.org/10.1002/andp.18972960216

  31. L. del Rio, A. Hutter, R. Renner, S. Wehner, Relative Thermalization. Phys. Rev. E 94, 022104 (2016). https://doi.org/10.1103/PhysRevE.94.022104

  32. K. Micadei, J.P.S. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. BatalhĂŁo, R.M. Serra, E. Lutz, Reversing the thermodynamic arrow of time using quantum correlations (2017). arXiv:1711.03323

  33. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. AcĂ­n, Extractable work from correlations. Phys. Rev. X 5, 041011 (2015). https://doi.org/10.1103/PhysRevX.5.041011

  34. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Maximal work extraction from finite quantum systems. Europhys. Lett. 67, 565 (2004). https://doi.org/10.1209/epl/i2004-10101-2

  35. W. Pusz, S.L. Woronowicz, Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978). https://doi.org/10.1007/BF01614224

  36. R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013). https://doi.org/10.1103/PhysRevE.87.042123

  37. A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum system. J. Stat. Phys. 19, 575–586 (1978). https://doi.org/10.1007/BF01011769

  38. K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. AcĂ­n, Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111, 240401 (2013). https://doi.org/10.1103/PhysRevLett.111.240401

  39. F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015). https://doi.org/10.1088/1367-2630/17/7/075015

  40. N. Friis, M. Huber, Precision and work fluctuations in gaussian battery charging. Quantum 2, 61 (2018). https://doi.org/10.22331/q-2018-04-23-61

  41. F. Campaioli, F.A. Pollock, F.C. Binder, L.C. CĂ©leri, J. Goold, S. Vinjanampathy, K. Modi, Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017). https://doi.org/10.1103/PhysRevLett.118.150601

  42. D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120, 117702 (2018). https://doi.org/10.1103/PhysRevLett.120.117702

  43. E.G. Brown, N. Friis, M. Huber, Passivity and practical work extraction using Gaussian operations. New J. Phys. 18, 113028 (2016). https://doi.org/10.1088/1367-2630/18/11/113028

  44. M. Brunelli, M.G. Genoni, M. Barbieri, M. Paternostro, Detecting Gaussian entanglement via extractable work. Phys. Rev. A 96, 062311 (2017). https://doi.org/10.1103/PhysRevA.96.062311

  45. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, A thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002). https://doi.org/10.1103/PhysRevLett.89.180402

  46. J. Oppenheim, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, A new type of complementarity between quantum and classical information. Phys. Rev. A 68, 022307 (2003). https://doi.org/10.1103/PhysRevA.68.022307

  47. M. Esposito, C. Van den Broeck, Second law and landauer principle far from equilibrium. Europhys. Lett. 95, 40004 (2011). https://doi.org/10.1209/0295-5075/95/40004

  48. D. Reeb, M.M. Wolf, An improved Landauer Principle with finite-size corrections. New J. Phys. 16, 103011 (2014). https://doi.org/10.1088/1367-2630/16/10/103011

  49. J. Ă…berg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013). https://doi.org/10.1038/ncomms2712

  50. P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014). https://doi.org/10.1038/ncomms5185

  51. Y. Guryanova, N. Friis, M. Huber, Ideal projective measurements have infinite resource costs. arXiv:1805.11899

Download references

Acknowledgements

We are grateful to Faraj Bakhshinezhad, Felix Binder, and Felix Pollock for helpful comments and suggestions. We thank Rick Sanchez for moral support. We acknowledge support from the Austrian Science Fund (FWF) through the START project Y879-N27, the Lise-Meitner project M 2462-N27, the project P 31339-N27, and the joint Czech-Austrian project MultiQUEST (I 3053-N27 and GF17-33780L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vitagliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vitagliano, G., Klöckl, C., Huber, M., Friis, N. (2018). Trade-Off Between Work and Correlations in Quantum Thermodynamics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_30

Download citation

Publish with us

Policies and ethics