Skip to main content

One-Shot Information-Theoretical Approaches to Fluctuation Theorems

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Traditional thermodynamics governs the behaviour of large systems that evolve between states of thermal equilibrium. For these large systems, the mean values of thermodynamic quantities (such as work, heat and entropy) provide a good characterisation of the process. Conversely, there is ever-increasing interest in the thermal behaviour of systems that evolve quickly and far from equilibrium, and that are too small for their behaviour to be well-described by mean values. Two major fields of modern thermodynamics seek to tackle such systems: non-equilibrium thermodynamics, and the nascent field of one-shot statistical mechanics. The former provides tools such as fluctuation theorems, whereas the latter applies “one-shot” Rényi entropies to thermal contexts. In this chapter, I provide a gentle introduction to recent research that draws from both fields: the application of one-shot information theory to fluctuation theorems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The surprise involves a logarithm rather than just the reciprocal probability to ensure additivity of surprises. For two mutually exclusive events with joint probability \(p\cdot q\), the joint surprise \(-\ln \left( p\cdot q\right) = -\ln \left( p\right) -\ln \left( q\right) \).

  2. 2.

    The base here is e because we have defined H in units of nats. If we had defined H in bits using \(-\sum _i p_x(i) \log _2 p_x(i)\), the base would be 2.

  3. 3.

    In the context of i.i.d. X, a sequence will be typical if and only if each symbol \(x_i\) appears \(p_i N\) times.

  4. 4.

    Or conversely, we encode both \(x_d\) and \(x_e\) to the same physical configuration. Then, \(\frac{1}{8}\) of messages have an indistinguishable \(x_d\)/\(x_e\), and we can guess the correct symbol \(\frac{1}{2}\) of the time: resulting in a \(\frac{1}{16}\) probability that the message is incorrectly decoded.

  5. 5.

    Sometimes the \(H_\frac{1}{2}\) is also referred to as the max-entropy. To avoid ambiguity, here we label the entropy explicitly by the parameter \(\alpha \), i.e. writing \(H_0\) rather than the ambiguous “\(H_\mathrm{max}\)”.

  6. 6.

    A formal discussion on where the information entropy can be considered a thermodynamic entropy is presented by Weilenmann et al. [19].

  7. 7.

    Conversely, this limit can be sharpened by restricting the set of allowed protocols (such as by bounding the effective dimension of the thermal reservoir [44]).

  8. 8.

    The reader should take care that there are varying notions of energy conservation, and in resource-theoretic frameworks, this will alter the set of permitted “thermal operations”. In particular, one may admit any operation that conserves energy on average (as per [45]), or alternatively could place stricter restrictions, such as mandating that the unitary representation of the dynamics on the system-battery commute with the total Hamiltonian (as per [16]). Here, we present a general scheme that can be adapted to either notion.

  9. 9.

    Furthermore, these two pictures can be seen to be equivalent: a time-varying Hamiltonian can be recast as a time-invariant Hamiltonian with the help of an ancillary “clock” system – for details, see Supplementary Material Sect. VIII of Brandão et al. [46], Appendix D2 of Yunger Halpern et al. [29], or Sect. IIA in Alhambra et al. [47].

  10. 10.

    This constraint is closely related to first, see Appendix A of [29].

  11. 11.

    Sometimes Eq. (27.29) is referred to as Crooks’ theorem itself. However, in [11], Crooks proves a more general statement about entropy production systems with microscopically reversible dynamics: \(P_\mathrm{fwd}\left( \omega \right) /P_\mathrm{rev}\left( -\omega \right) = \exp \left( \omega \right) \). The equation pertaining to work exchanges is the most notable example, and was also provided by Crooks’ in the same article.

  12. 12.

    Under the assumptions that allow us to use Crooks’ nonequilibrium work relation, the initial state is in thermal equilibrium and its free energy may be defined in the usual way. At time \(\tau \), the system may not be in thermal equilibrium. However, we can consider the state that would be reached (for the same final Hamiltonian) if that system were allowed to fully thermalize (limit \(t\rightarrow \infty \)), and take the free energy of that thermal state instead. It is the difference in free energy between the initial thermal state and the thermalized version of the final state that determines \(\Delta F\).

  13. 13.

    Quan and Dong [54] provide a derivation of this in a language familiar to quantum information scientists.

  14. 14.

    In addition to this and the work fluctuation equation discussed in Sect. 27.3, Yunger Halpern et al. [57] also demonstrate that this equality holds for classical phase space fluctuations.

References

  1. G.E. Moore, Cramming more components onto integrated circuits (Reprinted from Electronics, pp. 114–117, April 19, 1965). Proc. IEEE 86(1), 82–85 (1965). https://doi.org/10.1109/N-SSC.2006.4785860, ISSN 1098-4232

  2. Intel, Intel’s 10 nm technology: delivering the highest logic transistor density in the industry through the use of hyper scaling (2017), https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/10-nm-icf-fact-sheet.pdf

  3. M. Fuechsle, S. Mahapatra, F.A. Zwanenburg, M. Friesen, M.A. Eriksson, M.Y. Simmons, Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol. 5(7), 502–505 (2010). https://doi.org/10.1038/nnano.2010.95

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). ISBN 0521635039

    Google Scholar 

  5. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995). https://doi.org/10.1103/PhysRevLett.74.4091, ISSN 0031-9007

  6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464(7285), 45–53 (2010). https://doi.org/10.1038/nature08812, ISSN 0028-0836

  7. S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics (Oxford University Press, Oxford, 2006). ISBN 978-0199562107

    Google Scholar 

  8. D.N. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes (Akademie Verlag, 1996). ISBN 3055017080

    Google Scholar 

  9. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997). https://doi.org/10.1103/PhysRevLett.78.2690, ISSN 0031-9007

  10. G.E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90(5–6), 1481–1487 (1998). https://doi.org/10.1023/A:1023208217925, ISSN 1572-9613

  11. G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721–2726 (1999). https://doi.org/10.1103/PhysRevE.60.2721, ISSN 1063-651X

  12. L. del Rio, J. Åberg, R. Renner, O.C.O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474(7349), 61–63 (2011). https://doi.org/10.1038/nature10123, ISSN 1476-4687

  13. O.C.O. Dahlsten, R. Renner, E. Rieper, V. Vedral, Inadequacy of von Neumann entropy for characterizing extractable work. New J. Phys. 13(5), 053015 (2011). https://doi.org/10.1088/1367-2630/13/5/053015

  14. O.C.O. Dahlsten, Non-equilibrium statistical mechanics inspired by modern information theory. Entropy 15(12), 5346–5361 (2013). https://doi.org/10.3390/e15125346

  15. J. Åberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013). https://doi.org/10.1038/ncomms2712, ISSN 20411723

  16. M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013). https://doi.org/10.1038/ncomms3059, ISSN 2041-1723

  17. D. Egloff, O.C.O. Dahlsten, R. Renner, V. Vedral, A measure of majorization emerging from single-shot statistical mechanics. New J. Phys. 17(7), 073001 (2015). https://doi.org/10.1088/1367-2630/17/7/073001, ISSN 1367-2630

  18. F.G.S.L. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. 112(11), 201411728 (2015). https://doi.org/10.1073/pnas.1411728112, ISSN 0027-8424

  19. M. Weilenmann, L. Kraemer, P. Faist, R. Renner, Axiomatic relation between thermodynamic and information-theoretic entropies. Phys. Rev. Lett. 117(26), 260601 (2016). https://doi.org/10.1103/PhysRevLett.117.260601, ISSN 0031-9007

  20. A. Rényi, On measures of entropy and information, in Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561 (University of California Press, 1961)

    Google Scholar 

  21. R. Renner, S. Wolf, Smooth Renyi entropy and applications, in International Symposium on Information Theory, 2004, ISIT 2004. Proceedings, p. 232 (IEEE, 2004)

    Google Scholar 

  22. R. Renner, Security of quantum key distribution, Ph.D. thesis, ETH Zürich, 2005, http://arxiv.org/abs/quant-ph/0512258

  23. M. Tomamichel, Quantum Information Processing with Finite Resources (Springer, New York, 2016). https://doi.org/10.1007/978-3-319-21891-5, ISBN 978-3-319-21890-8

  24. C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J. 27(3), 379–423, 623–656 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, ISSN 00058580

  25. R. Hanel, S. Thurner, Generalized (c, d)-entropy and aging random walks. Entropy 15(12), 5324–5337 (2013). https://doi.org/10.3390/e15125324, ISSN 1099-4300

  26. D.S. Jones, Elementary Information Theory (Clarendon Press, Oxford, 1979). ISBN 9780198596363

    Google Scholar 

  27. V. Vedral, The role of relative entropy in quantum information theory. Rev. Modern Phys. 74(1), 197–234 (2002), http://rmp.aps.org/abstract/RMP/v74/i1/p197_1, ISSN 0034-6861

  28. A.J.P. Garner, Q. Liu, J. Thompson, V. Vedral, M. Gu, Provably unbounded memory advantage in stochastic simulation using quantum mechanics. New J. Phys. (2017). https://doi.org/10.1088/1367-2630/AA82DF, ISSN 1367-2630

  29. N. Yunger Halpern, A.J.P. Garner, O.C.O. Dahlsten, V. Vedral, Introducing one-shot work into fluctuation theorems. New J. Phys. 17, 095003 (2015). https://doi.org/10.1088/1367-2630/17/9/095003

  30. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006), https://www.wiley.com/en-sg/Elements+of+Information+Theory,+2nd+Edition-p-9780471241959. ISBN 9780471241959

  31. T.M. Mitchell, Machine Learning (McGraw-Hill, New York, 1997). ISBN 0070428077

    Google Scholar 

  32. T. Van Erven, P. Harrëmos, Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014). https://doi.org/10.1109/TIT.2014.2320500, ISSN 00189448

  33. B. Schumacher, Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995). https://doi.org/10.1103/PhysRevA.51.2738, ISSN 1050-2947

  34. M. Müller-Lennert, F. Dupuis, S. Szehr, S. Fehr, M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013). https://doi.org/10.1063/1.4838856, ISSN 0022-2488

  35. M.M. Wilde, A. Winter, D. Yang, Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014). https://doi.org/10.1007/s00220-014-2122-x, ISSN 0010-3616

  36. M. Tomamichel, M. Berta, M. Hayashi, Relating different quantum generalizations of the conditional Rényi entropy. J. Math. Phys. 55(8), 082206 (2014). https://doi.org/10.1063/1.4892761, ISSN 0022-2488

  37. R. Landauer, Irreversibility and heat generation in the computer process. IBM J. Res. Dev. 5, 183–191 (1961). https://doi.org/10.1147/rd.53.0183

  38. C.H. Bennett, The thermodynamics of computation a review. Int. J. Theor. Phys. 21(12), 905–940 (1982). https://doi.org/10.1007/BF02084158, ISSN 0020-7748

  39. C.H. Bennett, Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Modern Phys. 34(3), 501–510 (2003). https://doi.org/10.1016/S1355-2198(03)00039-X, ISSN 13552198

  40. R. Landauer, The physical nature of information. Phys. Lett. A 217(4), 188–193 (1996), http://www.sciencedirect.com/science/article/pii/0375960196004537

  41. J.C. Maxwell, Theory of Heat (Longmans, Green & Co, 1902 edition, 1870)

    Google Scholar 

  42. H. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Taylor & Francis, London, 2002)

    Google Scholar 

  43. L. Szilard, über die Enfropieuerminderung in einem thermodynamischen System bei Eingrifen intelligenter Wesen. Zeitschrift für Physik 53, 840–856 (1929)

    Article  ADS  Google Scholar 

  44. D. Reeb, M.M. Wolf, An improved Landauer principle with finite-size corrections. New J. Phys. 16(10), 103011 (2014). https://doi.org/10.1088/1367-2630/16/10/103011, ISSN 1367-2630

  45. P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014). https://doi.org/10.1038/ncomms5185, ISSN 2041-1723

  46. F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111(25), 250404 (2013). https://doi.org/10.1103/PhysRevLett.111.250404, ISSN 0031-9007

  47. A.M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Fluctuating work: from quantum thermodynamical identities to a second law equality. Phys. Rev. X 6(4), 041017 (2016). https://doi.org/10.1103/PhysRevX.6.041017, ISSN 2160-3308

  48. J. Anders, V. Giovannetti, Thermodynamics of discrete quantum processes. New J. Phys. 15(3), 033022 (2013). https://doi.org/10.1088/1367-2630/15/3/033022, ISSN 1367-2630

  49. C. Browne, A.J.P. Garner, O.C.O. Dahlsten, V. Vedral, Guaranteed energy-efficient bit reset in finite time. Phys. Rev. Lett. 113(10), 100603 (2014). https://doi.org/10.1103/PhysRevLett.113.100603, ISSN 0031-9007

  50. R. Alicki, The quantum open system as a model of the heat engine. J. Phys. A Math. Gen. 12(5), L103–L107 (1979). https://doi.org/10.1088/0305-4470/12/5/007, ISSN 0305-4470

  51. B. Piechocinska, Information erasure. Phys. Rev. A 61(6), 062314 (2000). https://doi.org/10.1103/PhysRevA.61.062314, ISSN 1050-2947

  52. R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, thermodynamics of quantum information systems Hamiltonian description. Open Syst. Inf. Dyn. (OSID) 11(03), 205–217 (2004). https://doi.org/10.1023/B:OPSY.0000047566.72717.71, ISSN 1230-1612

  53. E. Schrödinger, Statistical Thermodynamics, 2nd edn. (Cambridge University Press, Cambridge, 1946)

    MATH  Google Scholar 

  54. H.T. Quan, H. Dong, Quantum Crooks fluctuation theorem and quantum Jarzynski equality in the presence of a reservoir, 6 (2008), http://arxiv.org/abs/0812.4955

  55. D. Wu, D.A. Kofke, Phase-space overlap measures. I. fail-safe bias detection in free energies calculated by molecular simulation. J. Chem. Phys. 123(5), 054103 (2005). https://doi.org/10.1063/1.1992483, ISSN 0021-9606

  56. A. Gomez-Marin, J.M.R. Parrondo, C. Van den Broeck, The footprints of irreversibility. EPL (Europhys. Lett.) 82(5), 50002 (2008). https://doi.org/10.1209/0295-5075/82/50002, ISSN 0295-5075

  57. N. Yunger Halpern, A.J.P. Garner, O.C.O. Dahlsten, V. Vedral, Maximum one-shot dissipated work from Rényi divergences. Phys. Rev. E 97(5), 052135 (2018). https://doi.org/10.1103/PhysRevE.97.052135, ISSN 2470-0045

  58. O.C.O. Dahlsten, M.-S. Choi, D. Braun, A.J.P. Garner, N. Yunger Halpern, V. Vedral, Entropic equality for worst-case work at any protocol speed. New J. Phys. 19(4), 043013 (2017). https://doi.org/10.1088/1367-2630/aa62ba, ISSN 1367-2630

  59. N. Yunger Halpern, C. Jarzynski, Number of trials required to estimate a free-energy difference, using fluctuation relations. Phys. Rev. E 93(5), 052144 (2016). https://doi.org/10.1103/PhysRevE.93.052144, ISSN 2470-0045D

  60. C. Jarzynski, Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 73(4), 046105 (2006). https://doi.org/10.1103/PhysRevE.73.046105, ISSN 1539-3755

  61. J. Kurchan, A quantum fluctuation theorem (2000), http://arxiv.org/abs/cond-mat/0007360

  62. H. Tasaki, Jarzynski relations for quantum systems and some applications, 11 (2000), http://arxiv.org/abs/cond-mat/0009244

  63. V. Vedral, An information theoretic equality implying the Jarzynski relation. J. Phys. A Math. Theor. 45(27), 272001 (2012). https://doi.org/10.1088/1751-8113/45/27/272001, ISSN 1751-8113

  64. J.M.R. Parrondo, C. Van den Broeck, R. Kawai, Entropy production and the arrow of time. New J. Phys. 11(7), 073008 (2009). https://doi.org/10.1088/1367-2630/11/7/073008, ISSN 1367-2630

  65. B. Wei, M.B. Plenio, Relations between dissipated work in non-equilibrium process and the family of Rényi divergences. New J. Phys. 19(2), 023002 (2017). https://doi.org/10.1088/1367-2630/aa579e, ISSN 1367-2630

  66. G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1–58 (2015). https://doi.org/10.1016/j.physrep.2015.04.003

  67. M. Lostaglio, D. Jennings, T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6(1), 6383 (2015). https://doi.org/10.1038/ncomms7383, ISSN 2041-1723

  68. M. Lostaglio, K. Korzekwa, D. Jennings, T. Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015). https://doi.org/10.1103/PhysRevX.5.021001, ISSN 2160-3308

  69. P. Ćwikliński, M. Studziński, M. Horodecki, J. Oppenheim, Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115(21), 210403 (2015). https://doi.org/10.1103/PhysRevLett.115.210403, ISSN 0031-9007

  70. R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent thermodynamics in a quenched quantum many-body system. Phys. Rev. Lett. 109(16), 160601 (2012). https://doi.org/10.1103/PhysRevLett.109.160601, ISSN 0031-9007

  71. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry. Phys. Rev. Lett. 110(23), 230601 (2013). https://doi.org/10.1103/PhysRevLett.110.230601, ISSN 0031-9007

  72. T.B. Batalhão, A.M. Souza, R.S. Sarthour, I.S. Oliveira, M. Paternostro, E. Lutz, R.M. Serra, Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115(19), 190601 (2015). https://doi.org/10.1103/PhysRevLett.115.190601, ISSN 0031-9007

  73. T.P. Xiong, L.L. Yan, F. Zhou, K. Rehan, D.F. Liang, L. Chen, W.L. Yang, Z.H. Ma, M. Feng, V. Vedral, Experimental verification of a Jarzynski-related information-theoretic equality by a single trapped ion. Phys. Rev. Lett. 120(1), 010601 (2018). https://doi.org/10.1103/PhysRevLett.120.010601, ISSN 0031-9007

  74. X.-Y. Guo, Y. Peng, C. Peng, H. Deng, Y.-R. Jin, C. Tang, X. Zhu, D. Zheng, H. Fan, Demonstration of irreversibility and dissipation relation of thermodynamics with a superconducting qubit (2017), http://arxiv.org/abs/1710.10234

  75. J. Åberg, Fully quantum fluctuation theorems. Phys. Rev. X 8(1), 011019 (2018). https://doi.org/10.1103/PhysRevX.8.011019, ISSN 2160-3308

Download references

Acknowledgements

The author is grateful for discussions, comments and suggestions from Felix Binder, Oscar Dahlsten, Jayne Thompson, Vlatko Vedral, and Nicole Yunger Halpern. The author is financially supported by the Foundational Questions Institute “Physics of the Observer” large grant FQXi-RFP-1614.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. P. Garner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garner, A.J.P. (2018). One-Shot Information-Theoretical Approaches to Fluctuation Theorems. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_27

Download citation

Publish with us

Policies and ethics