Skip to main content

Hamiltonian of Mean Force for Strongly-Coupled Systems

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

A central assumption in macroscopic thermodynamics is the weak coupling approximation, which posits that the equilibrium properties of a system are not influenced by the interactions with its surrounding environment. However, for nanoscale systems, interactions appearing in the total Hamiltonian may be comparable in magnitude to the systems own internal energy. The presence of non-negligible interactions can alter the system’s equilibrium state, causing deviations from the standard Gibbs distribution. This motivates alternative statistical mechanical definitions of the thermodynamic potentials, such as the free energy and entropy, which can be achieved through an identification of the system’s Hamiltonian of mean force. This operator provides an effective thermodynamic description of the system both in and away from equilibrium, taking into account the strength of coupling with the environment. Here we give an overview of the properties of this operator, and demonstrate its usefulness in extending thermodynamics to the strong-coupling regime in both quantum and classical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, in Autobiographical Notes, ed. by P.A. Schilpp (Open Court Publishing, La Salle, 1979)

    Google Scholar 

  2. L. Landau, E. Lifshitz, Course of Theoretical Physics: Statistical Physics, vol. 5 (Pergamon, Oxford, 1958), p. 76

    Google Scholar 

  3. A.B. Kolomeisky, M.E. Fisher, Ann. Rev. Phys. Chem. 58, 675 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104532

  4. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Nature 437, 231 (2005). https://doi.org/10.1038/nature04061

  5. R. Kosloff, A. Levy, Ann. Rev. Phys. Chem. 65, 365 (2013). https://doi.org/10.1146/annurev-physchem-040513-103724

  6. P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015). https://doi.org/10.1038/nphys3167

  7. C. Jarzynski, Phys. Rev. X 7, 011008 (2017). https://doi.org/10.1103/PhysRevX.7.011008

  8. K. Huang, Lectures on Statistical Physics and Protein Folding (World Scientific Publishing, Singapore, 2005)

    Google Scholar 

  9. G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985). https://doi.org/10.1103/PhysRevLett.55.2273

  10. J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935). https://doi.org/10.1063/1.1749657

  11. S. Hilbert, P. Hänggi, J. Dunkel, Phys. Rev. E 90, 062116 (2014). https://doi.org/10.1103/PhysRevE.90.062116

  12. H. Touchette, J. Stat. Phys. 159, 987 (2015). https://doi.org/10.1007/s10955-015-1212-2

  13. C. Jarzynski, J. Stat. Mech. 2004, P09005 (2004). https://doi.org/10.1088/1742-5468/2004/09/P09005

  14. M.F. Gelin, M. Thoss, Phys. Rev. E 79, 051121 (2009). https://doi.org/10.1103/PhysRevE.79.051121

  15. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009a). https://doi.org/10.1103/PhysRevLett.102.210401

  16. A. Caldeira, A. Leggett, Phys. A 121, 587 (1983). https://doi.org/10.1016/0378-4371(83)90013-4

  17. H. Grabert, U. Weiss, P. Talkner, Z. Phys. B 55, 87 (1984). https://doi.org/10.1007/BF01307505

  18. B.L. Hu, J.P. Paz, Phys. Rev. D 45, 2843 (1992). https://doi.org/10.1103/PhysRevD.45.2843

  19. A.D.O. Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010). https://doi.org/10.1038/nature08967

  20. T.G. Philbin, J. Anders, J. Phys. A Math. Theor. 49, 215303 (2016). https://doi.org/10.1088/1751-8113/49/21/215303

  21. P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech. 2009, P02025 (2009). https://doi.org/10.1088/1742-5468/2009/02/P02025

  22. J.L. Lebowitz, L. Pastur, J. Phys. A 48, 265201 (2015). https://doi.org/10.1088/1751-8113/48/26/265201

  23. M. Kliesch, C. Gogolin, M.J. Kastoryano, A. Riera, J. Eisert, Phys. Rev. X 4, 031019 (2014). https://doi.org/10.1103/PhysRevX.4.031019

  24. Y. Subasi, C.H. Fleming, J.M. Taylor, B.L. Hu, Phys. Rev. E 061132, 061132 (2012). https://doi.org/10.1103/PhysRevE.86.061132

  25. C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016). https://doi.org/10.1088/0034-4885/79/5/056001

  26. E.T. Jaynes, Phys. Rev. 106, 620 (1957). https://doi.org/10.1103/PhysRev.106.620

  27. U. Seifert, Phys. Rev. Lett. 116, 020601 (2016). https://doi.org/10.1103/PhysRevLett.116.020601

  28. T.G. Philbin, N. J. Phys. 13, 063026 (2011). https://doi.org/10.1088/1367-2630/13/6/063026

  29. R.M. Wilcox, J. Math. Phys. 8, 962 (1967). https://doi.org/10.1063/1.1705306

  30. H.J.D. Miller, J. Anders, Nat. Comm. 9, 2203 (2018). https://doi.org/10.1038/s41467-018-04536-7

  31. P. Ullersma, Physica 32, 27 (1966). https://doi.org/10.1016/0031-8914(66)90102-9

  32. M.J. Donald, J. Stat. Phys. 49, 81 (1987). https://doi.org/10.1007/BF01009955

  33. M. Campisi, D. Zueco, P. Talkner, Chem. Phys. 375, 187 (2010). https://doi.org/10.1016/j.chemphys.2010.04.026

  34. G. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2008). https://doi.org/10.1103/PhysRevE.79.061105

  35. M. Campisi, P. Talkner, P. Hänggi, J. Phys. A Math. Theor. 42, 392002 (2009b). https://doi.org/10.1088/1751-8113/42/39/392002

  36. I. Frérot, T. Roscilde, Phys. Rev. B 94, 075121 (2016). https://doi.org/10.1103/PhysRevB.94.075121

  37. C. Jarzynski, Ann. Rev. Condens. Matter Phys. 2, 329 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140506

  38. G. Crooks, Phys. Rev. E 60, 2721 (1999). https://doi.org/10.1103/PhysRevE.60.2721

  39. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997). https://doi.org/10.1103/PhysRevLett.78.2690

  40. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007). https://doi.org/10.1103/PhysRevE.75.050102

  41. H.J. Miller, J. Anders, Phys. Rev. E 95, 062123 (2017). https://doi.org/10.1103/PhysRevE.95.062123

  42. P. Talkner, P. Hanggi, Phys. Rev. E 94, 022143 (2016). https://doi.org/10.1103/PhysRevE.94.022143

  43. P. Strasberg, M. Esposito, Phys. Rev. E 95, 062101 (2017). https://doi.org/10.1103/PhysRevE.95.062101

  44. U. Seifert, Eur. Phys. J. B 64, 423 (2008). https://doi.org/10.1140/epjb/e2008-00001-9

  45. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012). https://doi.org/10.1088/0034-4885/75/12/126001

  46. A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. Lett. 85, 1799 (2000). https://doi.org/10.1103/PhysRevLett.85.1799

  47. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005). https://doi.org/10.1103/PhysRevLett.95.040602

  48. E. Aurell, Phys. Rev. E. 97, 042112 (2018). https://doi.org/10.1103/PhysRevE.97.042112

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry J. D. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, H.J.D. (2018). Hamiltonian of Mean Force for Strongly-Coupled Systems. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_22

Download citation

Publish with us

Policies and ethics