Skip to main content

The Role of Quantum Work Statistics in Many-Body Physics

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

In this contribution, we aim to illustrate how quantum work statistics can be used as a tool in order to gain insight on the universal features of non-equilibrium many-body systems. Focusing on the two-point measurement approach to work, we first outline the formalism and show how the related irreversible entropy production may be defined for a unitary process. We then explore the physics of sudden quenches from the point of view of work statistics and show how the characteristic function of work can be expressed as the partition function of a corresponding classical statistical physics problem in a film geometry. Connections to the concept of fidelity susceptibility are explored along with the corresponding universal critical scaling. We also review how large deviation theory applied to quantum work statistics gives further insight to universal properties. The quantum-to-classical mapping turns out to have close connections with the historical problem of orthogonality catastrophe: we therefore discuss how this relationship may be exploited in order to experimentally extract quantum work statistics in many-body systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). https://doi.org/10.1103/RevModPhys.80.885

  2. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011). https://doi.org/10.1103/RevModPhys.83.863

  3. M. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011). https://doi.org/10.1103/RevModPhys.83.1405

  4. J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015). https://doi.org/10.1038/nphys3215

  5. F. Borgonovi, F. Izrailev, L. Santos, V. Zelevinsky, Phys. Rep. 626, 1 (2016). https://doi.org/10.1016/j.physrep.2016.02.005

  6. C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016). https://doi.org/10.1088/0034-4885/79/5/056001

  7. L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol, Adv. Phys. 65, 239 (2016). https://doi.org/10.1080/00018732.2016.1198134

  8. J. Dziarmaga, Adv. Phys. 59, 1063 (2010). https://doi.org/10.1080/00018732.2010.514702

  9. K. Sekimoto, Stochastic Energetics, vol. 799 (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-05411-2

  10. C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140506

  11. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012). https://doi.org/10.1088/0034-4885/75/12/126001

  12. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009). https://doi.org/10.1103/RevModPhys.81.1665

  13. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). https://doi.org/10.1103/RevModPhys.83.771

  14. P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015). https://doi.org/10.1038/nphys3167

  15. R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Phys. Rev. Lett. 109, 160601 (2012). https://doi.org/10.1103/PhysRevLett.109.160601

  16. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001

  17. A. Silva, Phys. Rev. Lett. 101, 120603 (2008). https://doi.org/10.1103/PhysRevLett.101.120603

  18. A.  Gambassi, A.  Silva, (2011). arXiv:1106.2671

  19. A. Gambassi, A. Silva, Phys. Rev. Lett. 109, 250602 (2012). https://doi.org/10.1103/PhysRevLett.109.250602

  20. Y.E. Shchadilova, P. Ribeiro, M. Haque, Phys. Rev. Lett. 112, 070601 (2014). https://doi.org/10.1103/PhysRevLett.112.070601

  21. P. Smacchia, A. Silva, Phys. Rev. Lett. 109, 037202 (2012). https://doi.org/10.1103/PhysRevLett.109.037202

  22. P. Smacchia, A. Silva, Phys. Rev. E 88, 042109 (2013). https://doi.org/10.1103/PhysRevE.88.042109

  23. M. Kolodrubetz, V. Gritsev, A. Polkovnikov, Phys. Rev. B 88, 064304 (2013). https://doi.org/10.1103/PhysRevB.88.064304

  24. T. Palmai, Phys. Rev. B 92, 235433 (2015). https://doi.org/10.1103/PhysRevB.92.235433

  25. S. Dorosz, T. Platini, D. Karevski, Phys. Rev. E 77, 051120 (2008). https://doi.org/10.1103/PhysRevE.77.051120

  26. E. Mascarenhas, H. Bragança, R. Dorner, M.F. Santos, V. Vedral, K. Modi, J. Goold, Phys. Rev. E 89, 062103 (2014). https://doi.org/10.1103/PhysRevE.89.062103

  27. L. Fusco, S. Pigeon, T.J.G. Apollaro, A. Xuereb, L. Mazzola, M. Campisi, A. Ferraro, M. Paternostro, G. De Chiara, Phys. Rev. X 4, 031029 (2014). https://doi.org/10.1103/PhysRevX.4.031029

  28. M. Zhong, P. Tong, Phys. Rev. E 91, 032137 (2015a). https://doi.org/10.1103/PhysRevE.91.032137

  29. T.J. Apollaro, G. Francica, M. Paternostro, M. Campisi, Physica Scripta 2015, 014023 (2015). https://doi.org/10.1088/0031-8949/2015/T165/014023

  30. M. Zhong, P. Tong, Phys. Rev. E 91, 032137 (2015b). https://doi.org/10.1103/PhysRevE.91.032137

  31. D.-T. Hoang, B.P. Venkatesh, S. Han, J. Jo, G. Watanabe, M.-S. Choi, (2015). arXiv:1508.02444

  32. S. Sharma, A. Dutta, Phys. Rev. E 92, 022108 (2015). https://doi.org/10.1103/PhysRevE.92.022108

  33. F.A. Bayocboc, F.N.C. Paraan, Phys. Rev. E 92, 032142 (2015). https://doi.org/10.1103/PhysRevE.92.032142

  34. P.P. Mazza, J.-M. Stéphan, E.  Canovi, V.  Alba, M.  Brockmann, M.  Haque, (2015). https://doi.org/10.1088/1742-5468/2016/01/013104

  35. A. Bayat, T.J. Apollaro, S. Paganelli, G. De Chiara, H. Johannesson, S. Bose, P. Sodano, Phys. Rev. B 93, 201106 (2016). https://doi.org/10.1103/PhysRevB.93.201106

  36. J. Goold, T. Fogarty, N.L. Gullo, M. Paternostro, T. Busch, Phys. Rev. A 84, 063632 (2011). https://doi.org/10.1103/PhysRevA.84.063632

  37. M. Heyl, S. Kehrein, Phys. Rev. B 85, 155413 (2012a). https://doi.org/10.1103/PhysRevB.85.155413

  38. M. Heyl, S. Kehrein, Phys. Rev. Lett. 108, 190601 (2012b). https://doi.org/10.1103/PhysRevLett.108.190601

  39. M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D.A. Abanin, E. Demler, Phys. Rev. X 2, 041020 (2012). https://doi.org/10.1103/PhysRevX.2.041020

  40. F. Plastina, A. Sindona, J. Goold, N. Lo Gullo, S. Lorenzo, Open Syst. Inf. ormation Dyn. 20, 1340005 (2013). arXiv:1311.1945

  41. A. Sindona, J. Goold, N.L. Gullo, S. Lorenzo, F. Plastina, Phys. Rev. Lett. 111, 165303 (2013). https://doi.org/10.1103/PhysRevLett.111.165303

  42. S. Campbell, M.Á. García-March, T. Fogarty, T. Busch, Phys. Rev. A 90, 013617 (2014). https://doi.org/10.1103/PhysRevA.90.013617

  43. M. Schiró, A. Mitra, Phys. Rev. Lett. 112, 246401 (2014). https://doi.org/10.1103/PhysRevLett.112.246401

  44. A. Sindona, J. Goold, N.L. Gullo, F. Plastina, New J. Phys. 16, 045013 (2014). https://doi.org/10.1088/1367-2630/16/4/045013

  45. G. Roux, Phys. Rev. A 79, 021608 (2009). https://doi.org/10.1103/PhysRevA.79.021608

  46. B. Dóra, A. Bácsi, G. Zaránd, Phys. Rev. B 86, 161109 (2012). https://doi.org/10.1103/PhysRevB.86.161109

  47. S. Sotiriadis, A. Gambassi, A. Silva, Phys. Rev. E 87, 052129 (2013). https://doi.org/10.1103/PhysRevE.87.052129

  48. B. Dóra, F. Pollmann, J. Fortágh, G. Zaránd, Phys. Rev. Lett. 111, 046402 (2013). https://doi.org/10.1103/PhysRevLett.111.046402

  49. A. Bácsi, B. Dóra, Phys. Rev. B 88, 155115 (2013). https://doi.org/10.1103/PhysRevB.88.155115

  50. G. De Chiara, A.J. Roncaglia, J.P. Paz, New J. Phys. 17, 035004 (2015). https://doi.org/10.1088/1367-2630/17/3/035004

  51. T. Johnson, F. Cosco, M. Mitchison, D. Jaksch, S. Clark, Phys. Rev. A 93, 053619 (2016). https://doi.org/10.1103/PhysRevA.93.053619

  52. R. Lena, G. Palma, G. De Chiara, Phys. Rev. A 93, 053618 (2016). https://doi.org/10.1103/PhysRevA.93.053618

  53. L. Villa, G. De Chiara, Quantum 2, 42 (2018). https://doi.org/10.22331/q-2018-01-04-42

  54. G. Bunin, L. D’Alessio, Y. Kafri, A. Polkovnikov, Nat. Phys. 7, 913 (2011). https://doi.org/10.1038/nphys2057

  55. A. Russomanno, S. Sharma, A. Dutta, G.E. Santoro, J. Stat. Mech. Theory Exp. 2015, P08030 (2015). https://doi.org/10.1088/1742-5468/2015/08/P08030

  56. A. Dutta, A. Das, K. Sengupta, Phys. Rev. E 92, 012104 (2015). https://doi.org/10.1103/PhysRevE.92.012104

  57. S. Lorenzo, J. Marino, F. Plastina, G.M. Palma, T.J. Apollaro, Sci. Rep. 7, 5672 (2017). https://doi.org/10.1038/s41598-017-06025-1

  58. F.N.C. Paraan, A. Silva, Phys. Rev. E 80, 061130 (2009). https://doi.org/10.1103/PhysRevE.80.061130

  59. D.A. Wisniacki, A.J. Roncaglia, Phys. Rev. E 87, 050902 (2013). https://doi.org/10.1103/PhysRevE.87.050902

  60. T. Pálmai, S. Sotiriadis, Phys. Rev. E 90, 052102 (2014). https://doi.org/10.1103/PhysRevE.90.052102

  61. Z. Gong, S. Deffner, H.T. Quan, Phys. Rev. E 90, 062121 (2014). https://doi.org/10.1103/PhysRevE.90.062121

  62. S. Deffner, A. Saxena, Phys. Rev. E 92, 032137 (2015). https://doi.org/10.1103/PhysRevE.92.032137

  63. N. Liu, J. Goold, I. Fuentes, V. Vedral, K. Modi, D.E. Bruschi, Class. Quantum Gravity 33, 035003 (2016). https://doi.org/10.1088/0264-9381/33/3/035003

  64. F. Jin, R. Steinigeweg, H. De Raedt, K. Michielsen, M. Campisi, J. Gemmer, Phys. Rev. E 94, 012125 (2016). https://doi.org/10.1103/PhysRevE.94.012125

  65. J.  Mur-Petit, A.  Relaño, R.  Molina, D.  Jaksch, (2017). https://doi.org/10.1038/s41467-018-04407-1

  66. F. Cosco, M. Borrelli, P. Silvi, S. Maniscalco, G. De Chiara, Phys. Rev. A 95, 063615 (2017). https://doi.org/10.1103/PhysRevA.95.063615

  67. P.  Rotondo, J.  Minar, J.P. Garrahan, I.  Lesanovsky, M.  Marcuzzi, (2018). https://doi.org/10.1103/PhysRevB.98.184303

  68. M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013). https://doi.org/10.1103/PhysRevLett.110.135704

  69. M.  Heyl, Rep. Prog. Phys. (2018). https://doi.org/10.1088/1361-6633/aaaf9a

  70. M. Campisi, J. Goold, Phys. Rev. E 95, 062127 (2017). https://doi.org/10.1103/PhysRevE.95.062127

  71. A.  Chenu, I.L. Egusquiza, J.  Molina-Vilaplana, A.  del Campo, (2017). https://doi.org/10.1038/s41598-018-30982-w

  72. H. Touchette, Phys. Rep. 478, 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.002

  73. P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967a). https://doi.org/10.1103/PhysRevLett.18.1049

  74. G. Mahan, Phys. Rev. 163, 612 (1967). https://doi.org/10.1103/PhysRev.163.612

  75. P. Nozières, C. De Dominicis, Phys. Rev. 178, 1097 (1969). https://doi.org/10.1103/PhysRev.178.1097

  76. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007). https://doi.org/10.1103/PhysRevE.75.050102

  77. S. Deffner, E. Lutz, Phys. Rev. Lett. 105, 170402 (2010). https://doi.org/10.1103/PhysRevLett.105.170402

  78. P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016). https://doi.org/10.1103/PhysRevE.93.022131

  79. A. Peres, Phys. Rev. A 30, 1610 (1984). https://doi.org/10.1103/PhysRevA.30.1610

  80. L.C. Venuti, P. Zanardi, Phys. Rev. Lett. 99, 095701 (2007). https://doi.org/10.1103/PhysRevLett.99.095701

  81. P. Zanardi, P. Giorda, M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007). https://doi.org/10.1103/PhysRevLett.99.100603

  82. S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010). https://doi.org/10.1142/S0217979210056335

  83. S.  Sachdev, Quantum Phase Transitions (Wiley Online Library, 2007). https://doi.org/10.1002/9780470022184.hmm108

  84. H.W. Diehl, in Phase Transitions and Critical Phenomena, vol.  10, ed. by C.  Domb, J.  Lebowitz (Academic, London, 1986). ISBN 0122203100

    Google Scholar 

  85. H.W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997). https://doi.org/10.1142/S0217979297001751

  86. M.N. Barber, in Phase Transitions and Critical Phenomena, vol.  8, ed. by C.  Domb, J.  Lebowitz (Academic London, 1983). ISBN 0122203089

    Google Scholar 

  87. J.  Cardy, Finite-Size Scaling, vol.  2 (North Holland, 1988). ISBN 0444871098

    Google Scholar 

  88. M.  Krech, The Casimir Effect in Critical Systems (World Scientific, 1994). https://doi.org/10.1142/2434

  89. A. Gambassi, J. Phys. Conf. Ser. 161, 012037 (2009). https://doi.org/10.1088/1742-6596/161/1/012037

  90. R. Alicki, M. Fannes, Phys. Rev. E 87, 042123 (2013). https://doi.org/10.1103/PhysRevE.87.042123

  91. F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, New J. Phys. 17, 075015 (2015). https://doi.org/10.1088/1367-2630/17/7/075015

  92. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015). https://doi.org/10.1103/PhysRevX.5.041011

  93. F. Campaioli, F.A. Pollock, F.C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Phys. Rev. Lett. 118, 150601 (2017). https://doi.org/10.1103/PhysRevLett.118.150601

  94. D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, Phys. Rev. Lett. 120, 117702 (2018). https://doi.org/10.1103/PhysRevLett.120.117702

  95. P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967b). https://doi.org/10.1103/PhysRevLett.18.1049

  96. G.D. Mahan, Many-Particle Physics, 3rd ed. (Springer Science, 2000). https://doi.org/10.1007/978-1-4757-5714-9

  97. A. Sindona, M. Pisarra, M. Gravina, C.V. Gomez, P. Riccardi, G. Falcone, F. Plastina, Beilstein J. Nanotechnol. 6, 755 (2015). https://doi.org/10.3762/bjnano.6.78

  98. R. Schmidt, M. Knap, D.A. Ivanov, J.-S. You, M. Cetina, E. Demler, Rep. Prog. Phys. 81, 024401 (2018). https://doi.org/10.1088/1361-6633/aa9593

  99. G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. Lett. 101, 070403 (2008). https://doi.org/10.1103/PhysRevLett.101.070403

  100. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013). https://doi.org/10.1103/PhysRevLett.110.230601

  101. L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013). https://doi.org/10.1103/PhysRevLett.110.230602

  102. S. Kohler, D. Zueco, M. Campisi, R. Blattmann, P. Hänggi, New J. Phys. 15, 105028 (2013). https://doi.org/10.1088/1367-2630/15/10/105028

  103. T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014). https://doi.org/10.1103/PhysRevLett.113.140601

  104. S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. Quan, K. Kim, Nat. Phys. 11, 193 (2015). https://doi.org/10.1038/nphys3197

  105. A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014). https://doi.org/10.1103/PhysRevLett.113.250601

  106. F. Cerisola, Y. Margalit, S. Machluf, A.J. Roncaglia, J.P. Paz, R. Folman, Nat. Commun. 8, 1241 (2017). https://doi.org/10.1038/s41467-017-01308-7

  107. M. Cetina, M. Jag, R.S. Lous, J.T. Walraven, R. Grimm, R.S. Christensen, G.M. Bruun, Phys. Rev. Lett. 115, 135302 (2015). https://doi.org/10.1103/PhysRevLett.115.135302

  108. M. Cetina, M. Jag, R.S. Lous, I. Fritsche, J.T. Walraven, R. Grimm, J. Levinsen, M.M. Parish, R. Schmidt, M. Knap et al., Science 354, 96 (2016). https://doi.org/10.1126/science.aaf5134

Download references

Acknowledgements

J.G. is supported by a SFI Royal Society University Research Fellowship. This project has received funding under the European Unions’s Horizon 2020 research and innovation programme (great agreement no 758403-ODYSSEY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Goold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goold, J., Plastina, F., Gambassi, A., Silva, A. (2018). The Role of Quantum Work Statistics in Many-Body Physics. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_13

Download citation

Publish with us

Policies and ethics