Skip to main content

Quantum Fluctuation Theorems

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as the Jarzynski equality and fluctuation theorems provide key information about the fluctuating thermodynamic quantities. We review the recent progress in quantum fluctuation theorems, including the studies of Maxwell’s demon which plays a pivotal role in connecting thermodynamics with information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Loschmidt, Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 73, 128 (1876)

    Google Scholar 

  2. C. Jarzynski, Annu. Rev. Condens. Matter. Phys. 2, 329 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140506

    Article  ADS  Google Scholar 

  3. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012). https://doi.org/10.1088/0034-4885/75/12/126001

    Article  ADS  Google Scholar 

  4. M. Campisi, P. Hanggi, Entropy 13, 2024 (2011). https://doi.org/10.3390/e13122024

    Article  ADS  MathSciNet  Google Scholar 

  5. U. Seifert, Eur. Phys. J. B 64, 423 (2008). https://doi.org/10.1140/epjb/e2008-00001-9

    Article  ADS  Google Scholar 

  6. K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics, vol. 799 (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-05411-2

  7. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993). https://doi.org/10.1103/PhysRevLett.71.2401

  8. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995). https://doi.org/10.1103/PhysRevLett.74.2694

  9. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997). https://doi.org/10.1103/PhysRevLett.78.2690

  10. G.E. Crooks, Phys. Rev. E 60, 2721–2726 (1999). https://doi.org/10.1103/PhysRevE.60.2721

    Article  ADS  Google Scholar 

  11. C. Jarzynski, J. Stat. Phys. 98, 77 (2000). https://doi.org/10.1023/A:1018670721277

    Article  MathSciNet  Google Scholar 

  12. T. Hatano, S.I. Sasa, Phys. Rev. Lett. 86, 3463 (2001). https://doi.org/10.1103/PhysRevLett.86.3463

  13. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005). https://doi.org/10.1103/PhysRevLett.95.040602

  14. R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007). https://doi.org/10.1103/PhysRevLett.98.080602

  15. M. Esposito, C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010). https://doi.org/10.1103/PhysRevLett.104.090601

  16. J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr., C. Bustamante, Science 296, 1832 (2002). https://doi.org/10.1126/science.1071152

    Article  ADS  Google Scholar 

  17. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr., C. Bustamante, Nature 437, 231 (2005). https://doi.org/10.1038/nature04061

    Article  ADS  Google Scholar 

  18. T.B. BatalhĂŁo, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014). https://doi.org/10.1103/PhysRevLett.113.140601

  19. S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H.T. Quan, K. Kim, Nature Phys. 11, 193 (2015). https://doi.org/10.1038/nphys3197

    Article  ADS  Google Scholar 

  20. M. Naghiloo, D. Tan, P.M. Harrington, J.J. Alonso, E. Lutz, A. Romito, K.W. Murch, arXiv:1703.05885

  21. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009). https://doi.org/10.1103/RevModPhys.81.1665

  22. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). https://doi.org/10.1103/RevModPhys.83.771

  23. J. Kurchan, arXiv:cond-mat/0007360

  24. H. Tasaki, arXiv:cond-mat/0009244

  25. P. Talkner, E. Lutz, P. Hanggi, Phys. Rev. E 75, 050102. https://doi.org/10.1103/PhysRevE.75.050102

  26. S. Deffner, E. Lutz, Phys. Rev. Lett. 107, 140404 (2011). https://doi.org/10.1103/PhysRevLett.107.140404

  27. C. Jarzynski, D.K. WĂłjcik, Phys. Rev. Lett. 92, 230602 (2004). https://doi.org/10.1103/PhysRevLett.92.230602

  28. T. Monnai, Phys. Rev. E 72, 027102 (2005). https://doi.org/10.1103/PhysRevE.72.027102

    Article  ADS  Google Scholar 

  29. G.E. Crooks, J. Stat. Mech. P10023 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10023

  30. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009). https://doi.org/10.1103/PhysRevLett.102.210401

  31. J.M. Horowitz, Phys. Rev. E 85, 031110 (2012). https://doi.org/10.1103/PhysRevE.85.031110

    Article  ADS  Google Scholar 

  32. F.W.J. Hekking, J.P. Pekola, Phys. Rev. Lett. 111, 093602 (2013). https://doi.org/10.1103/PhysRevLett.111.093602

  33. M. Campisi, P. Talkner, P. Hanggi, Phys. Rev. Lett. 105, 140601 (2010). https://doi.org/10.1103/PhysRevLett.105.140601

  34. J.J. Alonso, E. Lutz, A. Romito, Phys. Rev. Lett. 116, 080403 (2016). https://doi.org/10.1103/PhysRevLett.116.080403

  35. C. Elouard, D.A. Herrera-Marti, M. Clusel, A. Auffeves, npj Quantum Information 3, 9 (2017). https://doi.org/10.1038/s41534-017-0008-4

  36. M. Caselle, G. Costagliola, A. Nada, M. Panero, A. Toniato, Phys. Rev. D 94, 034503 (2016). https://doi.org/10.1103/PhysRevD.94.034503

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Caselle, A. Nada, M. Panero, arXiv:1801.03110

  38. A. Bartolotta, S. Deffner, Phys. Rev. X 8, 011033 (2018). https://doi.org/10.1103/PhysRevX.8.011033

    Article  Google Scholar 

  39. D. Andrieux, P. Gaspard, J. Stat. Mech. P0, 2007 (2006). https://doi.org/10.1088/1742-5468/2007/02/P02006

    Article  Google Scholar 

  40. K. Saito, A. Dhar, Phys. Rev. Lett. 99, 180601 (2008). https://doi.org/10.1103/PhysRevLett.99.180601

  41. K. Saito, Y. Utsumi, Phys. Rev. B 78, 115429 (2008). https://doi.org/10.1103/PhysRevB.78.115429

    Article  ADS  Google Scholar 

  42. S. Nakamura, Y. Yamauchi, M. Hashisaka, K. Chida, K. Kobayashi, T. Ono, R. Leturcq, K. Ensslin, K. Saito, Y. Utsumi, A.C. Gossard, Phys. Rev. Lett. 104, 080602 (2010). https://doi.org/10.1103/PhysRevLett.104.080602

  43. J.C. Maxwell, Theory of Heat (Appleton, London, 1871)

    Google Scholar 

  44. K. Maruyama, F. Nori, V. Vedral, Rev. Mod. Phys. 81, 1 (2009). https://doi.org/10.1103/RevModPhys.81.1

  45. T. Sagawa, Prog. Theo. Phys. 127, 1 (2012). https://doi.org/10.1143/PTP.127.1

    Article  ADS  Google Scholar 

  46. T. Sagawa, in Lectures on Quantum Computing, Thermodynamics, and Statistical Physics, ed. by M. Nakahara, S. Tanaka (World Scientific, Singapore, 2012). https://doi.org/10.1142/9789814425193_0003

  47. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015). https://doi.org/10.1038/nphys3230

    Article  Google Scholar 

  48. T. Sagawa, M. Ueda, Phys. Rev. Lett. 100, 080403 (2008). https://doi.org/10.1103/PhysRevLett.100.080403

  49. T. Sagawa, M. Ueda, Phys. Rev. Lett. 102, 250602 (2009). https://doi.org/10.1103/PhysRevLett.102.250602

  50. T. Sagawa, M. Ueda, Phys. Rev. Lett. 104, 090602 (2010). https://doi.org/10.1103/PhysRevLett.104.090602

  51. T. Sagawa, M. Ueda, Phys. Rev. Lett. 109, 180602 (2012). https://doi.org/10.1103/PhysRevLett.109.180602

  52. M. Morikuni, H. Tasaki, J. Stat. Phys. 143, 1 (2011). https://doi.org/10.1007/s10955-011-0153-7

    Article  ADS  MathSciNet  Google Scholar 

  53. K. Funo, Y. Watanabe, M. Ueda, Phys. Rev. E 88, 052121 (2013). https://doi.org/10.1103/PhysRevE.88.052121

    Article  ADS  Google Scholar 

  54. K. Funo, Y. Murashita, M. Ueda, New J. Phys. 17, 075005 (2015). https://doi.org/10.1088/1367-2630/17/7/075005

    Article  ADS  Google Scholar 

  55. M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013). https://doi.org/10.1038/ncomms3059

    Article  ADS  Google Scholar 

  56. A.S.L. Malabarba, A.J. Short, P. Kammerlander, New J. Phys. 17, 045027 (2015). https://doi.org/10.1088/1367-2630/17/4/045027

    Article  ADS  MathSciNet  Google Scholar 

  57. D. Kondepudi, I. Prigogine, From Heat Engines to Dissipative Structures (Wiley, New York, 1998). https://doi.org/10.1002/9781118698723

  58. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). https://doi.org/10.2277/0521635039

  59. C. Jarzynski, J. Stat. Mech. P09006 (2004). https://doi.org/10.1088/1742-5468/2004/09/P09005

  60. U. Seifert, Phys. Rev. Lett. 116, 020601 (2016). https://doi.org/10.1103/PhysRevLett.116.020601

  61. P. Talkner, P. Hänggi, Phys. Rev. E. 94, 022143 (2016). https://doi.org/10.1103/PhysRevE.94.022143

    Article  ADS  MathSciNet  Google Scholar 

  62. C. Jarzynski, Phys. Rev. X 7, 011008 (2017). https://doi.org/10.1103/PhysRevX.7.011008

    Article  Google Scholar 

  63. M. Esposito, C. Van den Broeck, Euro. Phys. Lett. 95, 40004 (2011). https://doi.org/10.1209/0295-5075/95/40004

    Article  ADS  Google Scholar 

  64. S. Deffner, E. Lutz, arXiv:1201.3888

  65. R. Landauer, IBM, J. Res. Dev. 5, 183–191 (1961). https://doi.org/10.1147/rd.53.0183

  66. L. del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61–63 (2011). https://doi.org/10.1038/nature10123

    Article  Google Scholar 

  67. D. Reeb, M.M. Wolf, New J. Phys. 16, 103011 (2014). https://doi.org/10.1088/1367-2630/16/10/103011

    Article  ADS  Google Scholar 

  68. T. Sagawa, As a chapter of: G. Snider et al. (eds.), Energy Limits in Computation: A Review of Landauer’s Principle, Theory and Experiments. https://doi.org/10.1007/978-3-319-93458-7

  69. À.M. Alhambra, L. Masanes, J. Oppenheim, C. Perry, Phys. Rev. X 6, 041017 (2016). https://doi.org/10.1103/PhysRevX.6.041017

    Article  Google Scholar 

  70. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, 2012). https://doi.org/10.1002/047174882X

  71. P. Talkner, P.S. Burada, P. Hanggi, Phys. Rev. E 78, 011115 (2008). https://doi.org/10.1103/PhysRevE.78.011115

    Article  ADS  Google Scholar 

  72. K. Funo, H.T. Quan, Phys. Rev. Lett. 121, 040602 (2018). https://doi.org/10.1103/PhysRevLett.121.040602

  73. S. Deffner, O. Abah, E. Lutz, Chem. Phys. 375, 200 (2010). https://doi.org/10.1016/j.chemphys.2010.04.042

    Article  Google Scholar 

  74. E.H. Lieb, M.B. Ruskai, Phys. Rev. Lett. 30, 434 (1973). https://doi.org/10.1103/PhysRevLett.30.434

  75. D. Petz, Rev. Math. Phys. 15, 79 (2003). https://doi.org/10.1142/S0129055X03001576

    Article  MathSciNet  Google Scholar 

  76. H. Spohn, J.L. Lebowitz, Adv. Chem. Phys. 38, 109 (1978). https://doi.org/10.1002/9780470142578

  77. F.G.S.L. Brand\(\tilde{\rm a}\)o, M. Horodecki, N.H.Y. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. USA 112, 3275 (2015). https://doi.org/10.1073/pnas.1411728112

  78. P. Faist, J. Oppenheim, R. Renner, New. J. Phys. 17, 045027 (2015). https://doi.org/10.1088/1367-2630/17/4/043003

    Article  MathSciNet  Google Scholar 

  79. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  80. T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, New J. Phys. 14, 123016 (2012). https://doi.org/10.1088/1367-2630/14/12/123016

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Yukawa, arXiv:cond-mat/0108421

  82. M. Esposito, K. Lndenberg, C. Van den Broeck, New. J. Phys. 12, 013013 (2010). https://doi.org/10.1088/1367-2630/12/1/013013

    Article  ADS  MathSciNet  Google Scholar 

  83. J.M. Horowitz, J.M.R. Parrondo, New J. Phys. 15, 085028 (2013). https://doi.org/10.1088/1367-2630/15/8/085028

    Article  ADS  Google Scholar 

  84. M. Silaev, T.T. Heikkila, P. Virtanen, Phys. Rev. E 90, 022103 (2014). https://doi.org/10.1103/PhysRevE.90.022103

    Article  ADS  Google Scholar 

  85. F. Liu, Phys. Rev. E 89, 042122 (2014). https://doi.org/10.1103/PhysRevE.89.042122

    Article  ADS  Google Scholar 

  86. F. Liu, Phys. Rev. E 93, 012127 (2016). https://doi.org/10.1103/PhysRevE.93.012127

    Article  ADS  Google Scholar 

  87. J.M. Horowitz, T. Sagawa, J. Stat. Phys. 156, 55 (2014). https://doi.org/10.1007/s10955-014-0991-1

    Article  ADS  MathSciNet  Google Scholar 

  88. G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Phys. Rev. E 92, 032129 (2015). https://doi.org/10.1103/PhysRevE.92.032129

    Article  ADS  MathSciNet  Google Scholar 

  89. G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Phys. Rev. X 8, 031037 (2018). https://doi.org/10.1103/PhysRevX.8.031037

  90. A.O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781139035439

  91. Y. Subasi, B.L. Hu, Phys. Rev. E 85, 011112 (2012). https://doi.org/10.1103/PhysRevE.85.011112

    Article  ADS  Google Scholar 

  92. L. Szilard, Z. Phys. 53, 840 (1929). https://doi.org/10.1007/BF01341281

    Article  ADS  Google Scholar 

  93. W.H. Zurek, in Frontiers of Nonequilibrium Statistical Physics. NATO ASI Series (Series B: Physics), vol. 135, ed. by G.T. Moore, M.O. Scully (Springer, Boston, 1986). arXiv:quant-ph/0301076

  94. S. Lloyd, Phys. Rev. A 39, 5378 (1989). https://doi.org/10.1103/PhysRevA.39.5378

    Article  ADS  MathSciNet  Google Scholar 

  95. M.A. Nielsen, C.M. Caves, B. Schumacher, H. Barnum, Proc. R. Soc. London A 454, 277 (1998). https://doi.org/10.1098/rspa.1998.0160

    Article  ADS  Google Scholar 

  96. S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011). https://doi.org/10.1103/PhysRevLett.106.070401

  97. J. Bengtsson, M. Nilsson Tengstrand, A. Wacker, P. Samuelsson, M. Ueda, H. Linke, S.M. Reimann, Phys. Rev. Lett. 120, 100601 (2018). https://doi.org/10.1103/PhysRevLett.120.100601

  98. H.J. Groenewold, Int. J. Theor. Phys. 4, 327 (1971). https://doi.org/10.1007/BF00815357

    Article  Google Scholar 

  99. M. Ozawa, J. Math. Phys. 27, 759 (1986). https://doi.org/10.1063/1.527179

    Article  ADS  MathSciNet  Google Scholar 

  100. F. Buscemi, M. Hayashi, M. Horodecki, Phys. Rev. Lett. 100, 210504 (2008). https://doi.org/10.1103/PhysRevLett.100.210504

  101. K. Jacobs, Phys. Rev. A 80, 012322 (2009). https://doi.org/10.1103/PhysRevA.80.012322

    Article  ADS  Google Scholar 

  102. M. Naghiloo, J.J. Alonso, A. Romito, E. Lutz, K.W. Murch, Phys. Rev. Lett. 121, 030604 (2018). https://doi.org/10.1103/PhysRevLett.121.030604

  103. W.H. Zurek, Phys. Rev. A 67, 012320 (2003). https://doi.org/10.1103/PhysRevA.67.012320

    Article  ADS  Google Scholar 

  104. K. Funo, Y. Watanabe, M. Ueda, Phys. Rev. A 88, 052319 (2013). https://doi.org/10.1103/PhysRevA.88.052319

    Article  ADS  Google Scholar 

  105. J.J. Park, K.-H. Kim, T. Sagawa, S.W. Kim, Phys. Rev. Lett. 111, 230402 (2013). https://doi.org/10.1103/PhysRevLett.111.230402

  106. D. Mandal, C. Jarzynski, Proc. Natl. Acad. Sci. USA 109, 11641 (2012). https://doi.org/10.1073/pnas.1204263109

    Article  ADS  Google Scholar 

  107. A. Chapman, A. Miyake, Phys. Rev. E 92, 062125 (2015). https://doi.org/10.1103/PhysRevE.92.062125

    Article  ADS  Google Scholar 

  108. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Phys. Rev. X 7, 021003 (2017). https://doi.org/10.1103/PhysRevX.7.021003

    Article  Google Scholar 

  109. Z. Gong, Y. Ashida, M. Ueda, PRA 94, 012107 (2016). https://doi.org/10.1103/PhysRevA.94.012107

    Article  ADS  Google Scholar 

  110. Y. Murashita, Z. Gong, Y. Ashida, M. Ueda, Phys. Rev. A 96, 043840 (2017). https://doi.org/10.1103/PhysRevA.96.043840

    Article  ADS  Google Scholar 

  111. J.V. Koski, V.F. Maisi, T. Sagawa, J.P. Pekola, Phys. Rev. Lett. 113, 030601 (2014). https://doi.org/10.1103/PhysRevLett.113.030601

  112. Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, Y. Nakamura, Nat. Commun. 9, 1291 (2018). https://doi.org/10.1038/s41467-018-03686-y

    Article  ADS  Google Scholar 

  113. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Phys. Rev. Lett. 110, 230601 (2013). https://doi.org/10.1103/PhysRevLett.110.230601

  114. L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013). https://doi.org/10.1103/PhysRevLett.110.230602

  115. P.A. Camatit, R.M. Serra, Phys. Rev. A 97, 042127 (2018). https://doi.org/10.1103/PhysRevA.97.042127

  116. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Nature 483, 187–189 (2012). https://doi.org/10.1038/nature10872

    Article  ADS  Google Scholar 

  117. A. BĂ©rut, A. Petrosyan, S. Ciliberto, Europhys. Lett. 103, 60002 (2013). https://doi.org/10.1209/0295-5075/103/60002

    Article  ADS  Google Scholar 

  118. E. Roldán, I.A. Martinez, J.M.R. Parrondo, D. Petrov, Nat. Phys. 10, 457–461 (2014). https://doi.org/10.1038/nphys2940

    Article  Google Scholar 

  119. Y. Jun, M. Gavrilov, J. Bechhoefer, Phys. Rev. Lett. 113, 190601 (2014). https://doi.org/10.1103/PhysRevLett.113.190601

  120. M. Gavrilov, J. Bechhoefer, Phys. Rev. Lett. 117, 200601 (2016). https://doi.org/10.1103/PhysRevLett.117.200601

  121. M. Gavrilov, R. Chétrite, J. Bechhoefer, Proc. Natl. Acad. Sci. USA 114, 11097–11102 (2017). https://doi.org/10.1073/pnas.1708689114

    Article  ADS  Google Scholar 

  122. J. Hong, B. Lambson, S. Dhuey, J. Bokor, Sci. Adv. 11, e1501492 (2016). https://doi.org/10.1126/sciadv.1501492

    Article  ADS  Google Scholar 

  123. M. López-Suárez, I. Neri, L. Gammaitoni, Nat. Commun. 7, 12068 (2016). https://doi.org/10.1038/ncomms12068

    Article  ADS  Google Scholar 

  124. J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. CĂ©leri, Proc. R. Soc. A 472, 20150813 (2016). https://doi.org/10.1098/rspa.2015.0813

    Article  ADS  Google Scholar 

  125. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010). https://doi.org/10.1038/nphys1821

    Article  Google Scholar 

  126. J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, Phys. Rev. Lett. 115, 260602 (2015). https://doi.org/10.1103/PhysRevLett.115.260602

  127. K. Chida, S. Desai, K. Nishiguchi, A. Fujiwara, Nat. Commun. 8, 15310 (2017). https://doi.org/10.1038/ncomms15301

    Article  ADS  Google Scholar 

  128. M.D. Vidrighin, O. Dahlsten, M. Barbieri, M.S. Kim, V. Vedral, I.A. Walmsley, Phys. Rev. Lett. 116, 050401 (2016). https://doi.org/10.1103/PhysRevLett.116.050401

  129. P.A. Camati, J.P.S. Peterson, T.B. BatalhĂŁo, K. Micadei, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 117, 240502 (2016). https://doi.org/10.1103/PhysRevLett.117.240502

  130. N. Cottet, S. Jezouin, L. Bretheau, P.C. Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, Proc. Natl. Acad. Sci. 114, 7561 (2017). https://doi.org/10.1073/pnas.1704827114

    Article  ADS  Google Scholar 

  131. W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, L. He, L.-M. Duan, Chinese Phys. Lett. 35, 040301 (2018). https://doi.org/10.1088/0256-307X/35/4/040301

    Article  ADS  Google Scholar 

  132. M.A. Ciampini, L. Mancino, A. Orieux, C. Vigliar, P. Mataloni, M. Paternostro, M. Barbieri, npj Quantum Information 3, 10 (2017). https://doi.org/10.1038/s41534-017-0011-9

  133. T. Albash, D.A. Lidar, M. Marvian, P. Zanardi, Phys. Rev. E 88, 032146 (2013). https://doi.org/10.1103/PhysRevE.88.032146

    Article  ADS  Google Scholar 

  134. A.E. Rastegin, J. Stat. Mech. P06016 (2013). https://doi.org/10.1088/1742-5468/2013/06/P06016

  135. A. Smith, Y. Lu, S. An, X. Zhang, J.-N. Zhang, Z. Gong, H.T. Quan, C. Jarzynski, K. Kim, New J. Phys. 20, 013008 (2018). https://doi.org/10.1088/1367-2630/aa9cd6

    Article  ADS  Google Scholar 

  136. D. Kafri, S. Deffner, Phys. Rev. A 86, 044302 (2012). https://doi.org/10.1103/PhysRevA.86.044302

    Article  ADS  Google Scholar 

  137. J. Goold, M. Paternostro, K. Modi, Phys. Rev. Lett. 114, 060602 (2015). https://doi.org/10.1103/PhysRevLett.114.060602

  138. S. Deffner, A. Saxena, Phys. Rev. Lett. 114, 150601 (2015). https://doi.org/10.1103/PhysRevLett.114.150601

  139. C. Jarzynski, H.T. Quan, S. Rahav, Phys. Rev. X 5, 031038 (2015). https://doi.org/10.1103/PhysRevX.5.031038

    Article  Google Scholar 

  140. L. Zhu, Z. Gong, B. Wu, H.T. Quan, Phys. Rev. E 93, 062108 (2016). https://doi.org/10.1103/PhysRevE.93.062108

    Article  ADS  Google Scholar 

  141. P. Solinas, S. Gasparinetti, Phys. Rev. E 92, 042150 (2015). https://doi.org/10.1103/PhysRevE.92.042150

    Article  ADS  MathSciNet  Google Scholar 

  142. P.P. Hofer, A.A. Clerk, Phys. Rev. Lett. 116, 013603 (2016). https://doi.org/10.1103/PhysRevLett.116.013603

  143. M. Hayashi, H. Tajima, Phys. Rev. A 95, 032132 (2017). https://doi.org/10.1103/PhysRevA.95.032132

    Article  ADS  Google Scholar 

  144. M.P. Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017). https://doi.org/10.1103/PhysRevLett.118.070601

  145. M. Lostaglio, Phys. Rev. Lett. 120, 040602 (2018). https://doi.org/10.1103/PhysRevLett.120.040602

  146. J. Aberg, Phys. Rev. X 8, 011019 (2018). https://doi.org/10.1103/PhysRevX.8.011019

    Article  Google Scholar 

  147. M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008). https://doi.org/10.1038/nature06838

    Article  ADS  Google Scholar 

  148. E. Iyoda, K. Kaneko, T. Sagawa, Phys. Rev. Lett. 119, 100601 (2017). https://doi.org/10.1103/PhysRevLett.119.100601

  149. K. Kaneko, E. Iyoda, T. Sagawa, Phys. Rev. E 96, 062148 (2017). https://doi.org/10.1103/PhysRevE.96.062148

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Masuyama for providing a cartoon of Maxwell’s demon in Fig. 10.3. K. F. acknowledges supports from the National Science Foundation of China under Grants No. 11375012 and 11534002, and The Recruitment Program of Global Youth Experts of China. M. U. acknowledges support by a Grant-in-Aid for Scientific Research on Innovative Areas Topological Materials Science (KAKENHI Grant No. JP15H05855). T. S. acknowledges supports from JSPS KAKENHI Grant No. JP16H02211 and No. JP25103003. Part of the research reviewed in this chapter was made possible by the COST MP1209 network “Thermodynamics in the quantum regime”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Sagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Funo, K., Ueda, M., Sagawa, T. (2018). Quantum Fluctuation Theorems. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_10

Download citation

Publish with us

Policies and ethics