Skip to main content

Polymers with Aggregation-Induced Emission Characteristics

  • Chapter
  • First Online:

Abstract

With rapid development of aggregation-induced emission (AIE), AIE polymers have attracted great attention because of their outstanding properties such as intense fluorescence, easy processability, facile functionalization, structural diversity, and excellent thermal stability, which offer them with an extensive fields of applications. In this chapter, different synthetic strategies of AIE polymers will be summarized, mainly including post-functionalization and direct polymerization. After that, the widespread applications of AIE polymers in optoelectronic, sensing, and biological fields will be introduced. Although great progress has been made, more work can be done for further development of AIE polymers. As most of reported AIE polymers are based on TPE moiety, new AIE systems with various structures are highly desired, which possess high emission efficiency and broad emission spectrum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18(18):1740–1741

    Article  Google Scholar 

  2. Tong H, Hong Y, Dong Y et al (2007) Color-tunable, aggregation-induced emission of a butterfly-shaped molecule comprising a pyran skeleton and two cholesteryl wings. J Phys Chem B 111(8):2000–2007

    Article  CAS  Google Scholar 

  3. Tong H, Hong Y, Dong Y et al (2007) Protein detection and quantitation by tetraphenylethene-based fluorescent probes with aggregation-induced emission characteristics. J Phys Chem B 111(40):11817

    Article  CAS  Google Scholar 

  4. Dong Y, Lam JWY, Qin A, Liu J, Li Z, Tang BZ (2007) Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl Phys Lett 91(1):1404

    Article  CAS  Google Scholar 

  5. Chen M, Li L, Nie H et al (2015) Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. Chem Sci 6(3):1932

    Article  CAS  Google Scholar 

  6. Liu J, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet Polym 19(3):249

    Article  CAS  Google Scholar 

  7. Lam JWY, Chen J, Law CCW et al (2003) Silole-containing linear and hyperbranched polymers: synthesis, thermal stability, light emission, nano-dimensional aggregation, and optical power limiting. Macromol Symp 196(1):289–300

    Article  CAS  Google Scholar 

  8. Qin A, Lam JWY, Tang BZ (2012) Luminogenic polymers with aggregation-induced emission characteristics. Prog Polym Sci 37(1):182–209

    Article  CAS  Google Scholar 

  9. Hu R, Leung NL, Tang BZ (2014) AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 43(13):4494–4562

    Article  CAS  Google Scholar 

  10. Qin A, Tang BZ (2014) Aggregation-induced emission: fundamentals. John-Wiley & Sons Ltd, Hoboken, NJ

    Google Scholar 

  11. Chou CA, Chien RH, Lai CT et al (2010) Complexation of bulky camphorsulfonic acid to enhance emission of organic and polymeric fluorophores with inherent quinoline moiety. Chem Phys Lett 501(1–3):80–86

    Article  CAS  Google Scholar 

  12. Wang H, Liu G, Dong S et al (2015) A pH-responsive AIE nanoprobe as a drug delivery system for bioimaging and cancer therapy. J Mater Chem B 3(37):7401–7407

    Article  CAS  Google Scholar 

  13. Yun Z, Engui Z, Lam JWY et al (2016) Development of a transition metal-free polymerization route to functional conjugated polydiynes from a haloalkyne-based organic reaction. Polym Chem 7:2492–2500

    Article  CAS  Google Scholar 

  14. Chan CYK, JWY L, Deng C et al (2015) Synthesis, light emission, explosive detection, fluorescent photopatterning, and optical limiting of disubstituted polyacetylenes carrying tetraphenylethene luminogens. Macromolecules 48(4):1038–1047

    Article  CAS  Google Scholar 

  15. Liu J, Lam JWY, Jim CKW et al (2011) Thiol−yne click polymerization: regio-and stereoselective synthesis of sulfur-rich acetylenic polymers with controllable chain conformations and tunable optical properties. Macromolecules 44(1):68–79

    Article  CAS  Google Scholar 

  16. Tang L, Jin JK, Qin A et al (2009) A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chem Commun 33(33):4974–4976

    Article  CAS  Google Scholar 

  17. Liu Y, Chen X, Lv Y et al (2012) Systemic studies of tetraphenylethene-triphenylamine oligomers and a polymer: achieving both efficient solid-state emissions and hole-transporting capability. Chem Eur J 18(32):9929–9938

    Article  CAS  Google Scholar 

  18. Qin A, Jim CKW, Tang Y et al (2008) Aggregation-enhanced emissions of intramolecular excimersin disubstituted polyacetylenes. J Phys Chem B 112(31):9281–9288

    Article  CAS  Google Scholar 

  19. Li Y, Zhou N, Zhang W et al (2011) Light-driven and aggregation-induced emission from side-chain azoindazole polymers. J Polym Sci Part A Polym Chem 49(22):4911–4920

    Article  CAS  Google Scholar 

  20. Qiu Z, Han T, Kwok RTK et al (2016) Polyarylcyanation of diyne: a one-pot three-component convenient route for in situ generation of polymers with AIE characteristics. Macromolecules 49(23):8888–8898

    Article  CAS  Google Scholar 

  21. Gu PY, Lu CJ, Ye FL et al (2012) Initiator-lightened polymers: preparation of end-functionalized polymers by ATRP and their intramolecular charge transfer and aggregation-induced emission. Chem Commun 48(82):10234–10236

    Article  CAS  Google Scholar 

  22. Wong MY (2017) Recent advances in polymer organic light-emitting diodes (PLED) using non-conjugated polymers as the emitting layer and contrasting them with conjugated counterparts. J Electron Mater 46(11):6246–6281

    Article  CAS  Google Scholar 

  23. Murata H, Malliaras GG, Uchida M et al (2001) Non-dispersive and air-stable electron transport in an amorphous organic semiconductor. Chem Phys Lett 339(3):161–166

    Article  CAS  Google Scholar 

  24. Wu H, Huang F, Peng J et al (2005) High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org Electron 6(3):118–128

    Article  CAS  Google Scholar 

  25. Liu ZT, Hu SJ, Zhang LH et al (2013) Electroluminescence performances of 1,1-bis(4-(N,N-dimethylamino)phenyl)-2,3,4,5-tetraphenylsilole based polymers in three cathode architectures. Sci China Chem 56(8):1129–1136

    Article  CAS  Google Scholar 

  26. Wu W, Ye S, Tang R et al (2012) New tetraphenylethylene-containing conjugated polymers: facile synthesis, aggregation-induced emission enhanced characteristics and application as explosive chemosensors and PLEDs. Polymer 53(15):3163–3171

    Article  CAS  Google Scholar 

  27. Wu W, Ye S, Huang L et al (2012) A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties: convenient synthesis through one-pot “A2 + B4” Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs. J Mater Chem 22(13):6374–6382

    Article  CAS  Google Scholar 

  28. Riehl JP, Richardson FS (1986) Circularly polarized luminescence spectroscopy. Chem Rev 86(1):1–16

    Article  CAS  Google Scholar 

  29. Liu X, Jiao J, Jiang X et al (2013) A tetraphenylethene-based chiral polymer: an AIE luminogen with high and tunable CPL dissymmetry factor. J Mater Chem C 1(31):4713–4719

    Article  CAS  Google Scholar 

  30. Zhang S, Sheng Y, Wei G et al (2015) Aggregation-induced circularly polarized luminescence of (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembly helical nanofibers. Polym Chem 6(13):2416–2422

    Article  CAS  Google Scholar 

  31. Mukherjee A (1993) Two-photon pumped upconverted lasing in dye doped polymer waveguides. Appl Phys Lett 62(26):3423–3425

    Article  CAS  Google Scholar 

  32. Bharali DJ, Lucey DW, Jayakumar H (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127(32):11364–11371

    Article  CAS  Google Scholar 

  33. Bidault S, Brasselet S, Zyss J et al (2007) Role of spatial distortions on the quadratic nonlinear optical properties of octupolar organic and metallo-organic molecules. J Chem Phys 126(3):034312

    Article  CAS  Google Scholar 

  34. Dvornikov AS, Walker EP, Rentzepis PM (2009) Two-photon three-dimensional optical storage memory. J Phys Chem A 113(49):13633–13644

    Article  CAS  Google Scholar 

  35. Celli JP, Spring BQ, Rizvi I et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838

    Article  CAS  Google Scholar 

  36. Hu R, Maldonado JL, Rodriguez M et al (2011) Luminogenic materials constructed from tetraphenylethene building blocks: synthesis, aggregation-induced emission, two-photon absorption, light refraction, and explosive detection. J Mater Chem 22(1):232–240

    Article  Google Scholar 

  37. Liu J, Zhong Y, Lu P et al (2010) A super amplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polym Chem 1(4):426–429

    Article  CAS  Google Scholar 

  38. Li J, Liu J, Lam JWY et al (2013) Poly(aryleneynonylene) with an aggregation-enhanced emission characteristic: a fluorescent sensor for both hydrazine and explosive detection. RSC Adv 3(22):8193–8196

    Article  CAS  Google Scholar 

  39. Zhou H, Li J, Ming HC et al (2014) Poly(acrylate) with a tetraphenylethene pendant with aggregation-induced emission (AIE) characteristics: highly stable AIE-active polymer nanoparticles for effective detection of nitro compounds. Polym Chem 5(19):5628–5637

    Article  CAS  Google Scholar 

  40. Dong W, Fei T, Palmacando A et al (2014) Aggregation induced emission and amplified explosive detection of tetraphenylethylene-substituted polycarbazoles. Polym Chem 5(13):4048–4053

    Article  CAS  Google Scholar 

  41. Dong W, Pan Y, Fritsch M et al (2015) High sensitivity sensing of nitroaromatic explosive vapors based on polytriphenylamines with AIE-active tetraphenylethylene side groups. J Polym Sci A Polym Chem 53(15):1753–1761

    Article  CAS  Google Scholar 

  42. Ghosh KR, Saha SK, Wang ZY (2014) Ultra-sensitive detection of explosives in solution and film as well as the development of thicker film effectiveness by tetraphenylethene moiety in AIE active fluorescent conjugated polymer. Polym Chem 5(19):5638–5643

    Article  CAS  Google Scholar 

  43. Peterson JJ, Davis AR, Werre M et al (2011) Carborane-containing poly(fluorene): response to solvent vapors and amines. ACS Appl Mater Interfaces 3(6):1796–1799

    Article  CAS  Google Scholar 

  44. Saha SK, Ghosh KR, Gao JP et al (2014) Highly sensitive dual-mode fluorescence detection of lead ion in water using aggregation-induced emissive polymers. Macromol Rapid Commun 35(18):1592–1597

    Article  CAS  Google Scholar 

  45. Zhan R, Pan Y, Manghnani PN et al (2017) AIE polymers: synthesis, properties, and biological applications. Macromol Biosci 17(5):1600433

    Article  CAS  Google Scholar 

  46. Wang G, Zhang R, Xu C et al (2014) Fluorescence detection of DNA hybridization based on the aggregation-induced emission of a perylene-functionalized polymer. ACS Appl Mater Interfaces 6(14):11136

    Article  CAS  Google Scholar 

  47. Zhang X, Zhang X, Yang B et al (2013) A novel method for preparing AIE dye based cross-linked fluorescent polymeric nanoparticles for cell imaging. Polym Chem 5(3):683–688

    Article  Google Scholar 

  48. Wang Z, Yong TY, Wan J et al (2015) Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing. ACS Appl Mater Interfaces 7(5):3420

    Article  CAS  Google Scholar 

  49. Li Y, Yu H, Qian Y et al (2015) Amphiphilic star copolymer-based bimodal fluorogenic/magnetic resonance probes for concomitant bacteria detection and inhibition. Adv Mater 26(39):6734–6741

    Article  CAS  Google Scholar 

  50. Yoshii R, Hirose A, Tanaka K et al (2014) Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers. J Am Chem Soc 136(52):18131

    Article  CAS  Google Scholar 

  51. Doonan CJ, Tranchemontagne DJ, Glover TG et al (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2(3):235

    Article  CAS  Google Scholar 

  52. Li A, Sun HX, Tan DZ et al (2011) Super hydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci 4(6):2062–2065

    Article  CAS  Google Scholar 

  53. Chen L, Yang Y, Jiang D (2010) CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metal oporphyrin polymers. J Am Chem Soc 132(26):9138–9143

    Article  CAS  Google Scholar 

  54. Gu C, Huang N, Wu Y et al (2015) Design of highly photofunctional porous polymer films with controlled thickness and prominent microporosity. Angew Chem Int Ed 127(39):11702–11706

    Article  Google Scholar 

  55. Hu R, Lam JWY, Liu J et al (2012) Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polym Chem 3(6):1481–1489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjun Qin or Ben Zhong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, J., Qin, A., Tang, B.Z. (2019). Polymers with Aggregation-Induced Emission Characteristics. In: Tang, Y., Tang, B. (eds) Principles and Applications of Aggregation-Induced Emission. Springer, Cham. https://doi.org/10.1007/978-3-319-99037-8_4

Download citation

Publish with us

Policies and ethics