Skip to main content

Raspberry Fruit Chemistry in Relation to Fruit Quality and Human Nutrition

  • Chapter
  • First Online:
Raspberry

Abstract

In recent years raspberry fruit breeding has shifted its focus from traits associated with agronomic performance towards those associated with fruit sensory quality (Jennings et al. 2016) and potential health benefits (Mazzoni et al. 2016). Simultaneously, significant advancements have been made in raspberry genetics and genomics as well as analytical chemistry in soft fruit. These new tools are generating knowledge that has the capacity to significantly accelerate the development of new varieties that meet consumer expectations in terms of sensory experience and health benefits of fruit consumption. Significant research in recent years has identified the environmental, biochemical and genetic controls underlying the accumulation of specific compounds in raspberry fruit. Furthermore, increasing information is becoming available regarding the mechanisms of action of specific phytochemicals in relation to human health outcomes. This information is now providing the underpinning science for the development of new cultivars. In this chapter, we outline current understanding of the biosynthetic pathways associated with the accumulation of significant fruit phytochemicals and describe what is presently known regarding the influence of crop genetics and the growing environment on the accumulation of specific phytochemicals. Finally we outline the latest knowledge regarding how fruit phytochemicals modulate human health outcomes. It is anticipated that the work outlined here will guide molecular breeding targets for future crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni A, Giri AP, Verstappen FWA et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarado-Raya HE, Darnell RL, Williamson JG (2007) Root to shoot relations in an annual raspberry (Rubus idaeus L.) production system. HortSci 42:1559–1562

    Google Scholar 

  • Anttonen MJ, Karjalainen RO (2005) Environmental and genetic variation of phenolic compounds in red raspberry. J Food Compos Anal 18:759–769

    Article  CAS  Google Scholar 

  • Aprea E, Biasioli F, Gasperi F (2015) Volatile compounds of raspberry fruit: from analytical methods to biological role and sensory impact. Molecules 20:2445–2474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Basu A, Rhone M, Lyons TJ (2010) Berries: Emerging impact on cardiovascular health. Nutr Rev 68:168–177

    Article  PubMed  Google Scholar 

  • Beekwilder J, Jonker H, Meesters P et al (2005) Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem 55:3313–3320

    Article  CAS  Google Scholar 

  • Beekwilder J, van der Meer IM, Simic A et al (2008) Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit. Biofactors 34:57–66

    PubMed  Google Scholar 

  • Bhandary B, Lee GH, Marahatta A et al (2012) Water extracts of immature Rubus coreanus regulate lipid metabolism in liver cells. Biol Pharm Bull 35:1907–1913

    Article  CAS  PubMed  Google Scholar 

  • Boath AS, Stewart D, McDougall GJ (2012) Berry components inhibit α-glucosidase in vitro: synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem 135:929–936

    Article  CAS  PubMed  Google Scholar 

  • Bontpart T, Marlin T, Vialet S et al (2016) Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. J Exp Bot 67:3537–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borejsza-Wysocki W, Hradzina G (1994) Biosynthesis of p-hydroxyphenylbutan-2-one in raspberry fruits and tissue cultures. Phytochemistry 35:623–628

    Article  CAS  Google Scholar 

  • Borejsza-Wysocki W, Hrazdina G (1996) Aromatic polyketide synthases. Purification, characterization, and antibody development to benzalacetone synthase from raspberry fruits. Plant Physiol 110:791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges G, Degeneve A, Mullen W et al (2010) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem 58:3901–3909

    Article  CAS  PubMed  Google Scholar 

  • Bowen-Forbes CS, Zhang YN, Muraleedharan G (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23:554–560

    Article  CAS  Google Scholar 

  • Bradish CM, Perkins-Veazie P, Fernandez GE et al (2012) Comparison of flavonoid composition of red raspberries (Rubus idaeus L.) grown in the Southern United States. J Agric Food Chem 60:5779–5786

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, Gill CIR, McDougall GJ et al (2012) Mechanisms underlying the anti-proliferative effects of berry components in in vitro models of colon cancer. Curr Pharm Biotechnol 13:200–209

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, McDougall GJ, Stewart D et al (2014) Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation. PLoS One 7:e49740

    Article  CAS  Google Scholar 

  • Burton-Freeman BM, Sandhu AK et al (2016) Red raspberries and their bioactive polyphenols: Cardiometabolic and neuronal health links. Adv Nutr 7:44–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushakra JM, Krieger C, Deng D et al (2013) QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 126:847–865

    Article  CAS  PubMed  Google Scholar 

  • Bushman BS, Phillips B, Isbell T et al (2004) Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential. J Agric Food Chem 52:7982–7987

    Article  CAS  PubMed  Google Scholar 

  • Carvalho E, Fraser PD, Martens S (2013a) Carotenoids and tocopherols in yellow and red raspberries. Food Chem 139:744–752

    Article  CAS  PubMed  Google Scholar 

  • Carvalho E, Franceschi P, Feller A et al (2013b) A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiol Biochem 72:79–86

    Article  CAS  PubMed  Google Scholar 

  • Çekiç Ç, Özgen M (2010) Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). J Food Compos Anal 23:540–544

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J et al (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xin X, Yuan Q et al (2014) Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric 94:180–188

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Xu Y, Zhang LX et al (2016a) Blackberry subjected to in vitro gastrointestinal digestion affords protection against ethyl carbamate-induced cytotoxicity. Food Chem 212:620–627

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Su HM, Xu Y et al (2016b) Protective effect of wild raspberry (Rubus hirsutus Thunb.) extract against acrylamide-induced oxidative damage is potentiated after simulated gastrointestinal digestion. Food Chem 196:943–952

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, White MF (2011) Targeting forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal 14:649–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong MF, Macdonald R, Lovegrove JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104:S28–S39

    Article  CAS  PubMed  Google Scholar 

  • Claussnitzer M, Skurk T, Hauner H et al (2011) Effect of flavonoids on basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes. Mol Nutr Food Res 55:S26–S34

    Article  CAS  PubMed  Google Scholar 

  • Coates EM, Popa G, Gill CI et al (2007) Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J Carcinogenesis 18:1–6

    Google Scholar 

  • Connor AM, McGhie TK, Stephens MJ et al (2005) Variation and heritability estimates of anthocyanins and their relationship to antioxidant activity in a red raspberry factorial mating design. J Am Soc Hortic Sci 130:534–542

    CAS  Google Scholar 

  • de Oliveira PB, Silva MJ, Ferreira RB et al (2007) Dry matter partitioning, carbohydrate composition, protein reserves, and fruiting in ‘Autumn Bliss’ red raspberry vary in response to pruning date and cane density. HortSci 42:77–82

    Google Scholar 

  • Deighton N, Brennan R, Finn C et al (2000) Antioxidant properties of domesticated and wild Rubus species. J Sci Food Agric 80:1307–1313

    Article  CAS  Google Scholar 

  • Dincheva I, Badjakov I, Kondakova V et al (2013a) Metabolic profiling of red raspberry (Rubus idaeus) during fruit development and ripening. Int J Agr Sci 3:81–88

    Google Scholar 

  • Dincheva I, Badjakov I, Kondakova V et al (2013b) Identification of the phenolic components in Bulgarian raspberry cultivars by LC-ESI-MSn. Int J Agr Sci 3:127–138

    Google Scholar 

  • Dobson P, Graham J, Stewart D et al (2012) Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem 60:5360–5366

    Article  CAS  PubMed  Google Scholar 

  • Eid HM, Martineau LC, Saleem A et al (2010) Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol Nutr Food Res 54:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Famiani F, Cultrera NGM, Battistelli A et al (2005) Phosphoenol pyruvate carboxykinase and its potential role in the catabolism of organic acids in the flesh of soft fruit during ripening. J Exp Bot 56:2959–2969

    Article  CAS  PubMed  Google Scholar 

  • Feresin RG, Huang JW, Klarich DS et al (2016) Blackberry, raspberry and black raspberry polyphenol extracts attenuate angiotensin II-induced senescence in vascular smooth muscle cells. Food Funct 7:4175–4187

    Article  CAS  PubMed  Google Scholar 

  • Ferrer J-L, Austin MB, Stewart C et al (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  PubMed  Google Scholar 

  • Fotirić Akšić M, Radović A, Milivojević J et al (2011) Genetic parameters of yield components and pomologic properties in raspberry seedlings. Genetika 43:667–674

    Article  Google Scholar 

  • Freeman BL, Stocks JC, Eggett DL et al (2011) Antioxidant and phenolic changes across one harvest season and two storage conditions in primocane raspberries (Rubus idaeus L.) grown in a hot, dry climate. HortSci 46:236–239

    CAS  Google Scholar 

  • Galleano M, Pechanova O, Fraga CG (2010) Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr Pharm Biotechnol 11:837–848

    Article  CAS  PubMed  Google Scholar 

  • Garcia G, Nanni S, Figueira I et al (2012) Bio-accessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chem 215:274–283

    Article  CAS  Google Scholar 

  • Gasperotti M, Masuero D, Vrhovsek U et al (2010) Profiling and accurate quantification of Rubus ellagitannins and ellagic acid conjugates using direct UPLC-Q-TOF HDMS and HPLC-DAD analysis. J Agric Food Chem 58:4602–4616

    Article  CAS  PubMed  Google Scholar 

  • Godevac D, Tesević V, Vajs V et al (2009) Antioxidant properties of raspberry seed extracts on micronucleus distribution in peripheral blood lymphocytes. Food Chem Toxicol 47:2853–2859

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Sarrias A, Nunez-Sanchez MA, Tomas-Barberan FA et al (2017a) Neuroprotective effects of bioavailable polyphenol-derived metabolites against oxidative stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J Agric Food Chem 65:752–758

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Sarrias A, Nunez-Sanchez MA, Garcia-Villalba R et al (2017b) Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism. Eur J Nutr 56:831–841

    Article  CAS  PubMed  Google Scholar 

  • Gorelik S, Lapidot T, Shaham I et al (2005) Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications. J Agric Food Chem 53:3397–3402

    Article  CAS  PubMed  Google Scholar 

  • Grussu D, Stewart D, McDougall GJ (2011) Berry polyphenols inhibit alpha-amylase in vitro: identifying active components in rowanberry and raspberry. J Agric Food Chem 59:2324–2331

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF et al (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Hampel D, Swatski A, Mosand A et al (2007) Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. J Agric Food Chem 55:9296–9304

    Article  CAS  PubMed  Google Scholar 

  • Hancock RD, McDougall GJ, Stewart D (2007) Berry fruit as ‘superfoods’: hope or hype? Biologist 54:73–79

    Google Scholar 

  • Hanhineva K, Torronen R, Bondia-Pons I et al (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Tian H, Luo X et al (2015) Molecular progress in research on fruit astringency. Molecules 20:1434–1451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hsieh YS, Chu SC, Hsu LS et al (2013) Rubus idaeus L. reverses epithelial-to-mesenchymal transition and suppresses cell invasion and protease activities by targeting ERK1/2 and FAK pathways in human lung cancer cells. Food Chem Toxicol 62:908–918

    Article  CAS  PubMed  Google Scholar 

  • Hyun TK, Lee S, Kumar D et al (2014) RNA-seq analysis of Rubus idaeus cv. Nova: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. Plant Cell Rep 33:1617–1628

    Article  CAS  PubMed  Google Scholar 

  • Im SE, Nam TG, Lee H et al (2013) Anthocyanins in the ripe fruits of Rubus coreanus Miguel and their protective effect on neuronal PC-12 cells. Food Chem 139:604–610

    Article  CAS  PubMed  Google Scholar 

  • Jennings N, Graham J, Ferguson L et al (2016) New developments in raspberry breeding in Scotland. Acta Hortic 1133:23–28

    Article  Google Scholar 

  • Jeong MY, Kim HL, Park J et al (2013) Rubi Fructus (Rubus coreanus) inhibits differentiation to adipocytes in 3T3-L1 cells. Evid Based Complement Alternat Med 2013:475386

    PubMed  PubMed Central  Google Scholar 

  • Jeong MY, Kim HL, Park J et al (2015) Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int J Obes 39:456–464

    Article  CAS  Google Scholar 

  • Jia H, Liu JW, Ufur HM et al (2011) The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats. Pharmacogn Mag 7:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung MS, Lee SJ, Song Y et al (2016) Rubus crataegifolius Bunge regulates adipogenesis through Akt and inhibits high-fat diet-induced obesity in rats. Nutr Metab 13:29

    Article  CAS  Google Scholar 

  • Kang I, Espin JC, Carr TP et al (2016) Raspberry seed flour attenuates high-sucrose diet-mediated hepatic stress and adipose tissue inflammation. J Nutr Biochem 32:64–72

    Article  CAS  PubMed  Google Scholar 

  • Kassim A, Poette J, Paterson A et al (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ (2010) Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol 187:44–56

    Article  CAS  PubMed  Google Scholar 

  • Klesk K, Qian M, Martin RR (2004) Aroma extract dilution analysis of cv. Meeker (Rubus idaeus L.) red raspberries from Oregon and Washington. J Agric Food Chem 52:5155–5161

    Article  CAS  PubMed  Google Scholar 

  • Koeduka T, Watanabe B, Suzuki S et al (2011) Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits. Biochem Biophys Res Commun 412:104–108

    Article  CAS  PubMed  Google Scholar 

  • Koli R, Erlund I, Jula A et al (2010) Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J Agric Food Chem 58:3927–3932

    Article  CAS  PubMed  Google Scholar 

  • Krüger E, Dietrich H, Schöpplein E et al (2011) Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biol Technol 60:31–37

    Article  CAS  Google Scholar 

  • Kula M, Majdan M, Glód D et al (2016) Phenolic composition of fruits from different cultivars of red and black raspberries grown in Poland. J Food Compos Anal 52:74–82

    Article  CAS  Google Scholar 

  • Kumar A, Ellis BE (2001) The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 127:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Ellis BE (2003) A family of polyketide synthase genes expressed in ripening Rubus fruits. Phytochemistry 62:513–526

    Article  CAS  PubMed  Google Scholar 

  • Ladiwala AR, Mora-Pale M, Lin JC et al (2011) Polyphenolic glycosides and aglycones utilize opposing pathways to selectively remodel and inactivate toxic oligomers of amyloid beta. Chembiochem 12:1749–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen M, Poll L (1990) Odour thresholds of some important aroma compounds in raspberries. Z Lebensm Unters Forsch 191:129–131

    Google Scholar 

  • Larsen M, Poll L, Callesen O et al (1991) Relations between the content of aroma compounds and the sensory evaluation of 10 raspberry varieties (Rubus idaeus L). Acta Agric Scand 41:447–454

    Article  CAS  Google Scholar 

  • Lee J (2015) Sorbitol, Rubus fruit, and misconception. Food Chem 166:616–622

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Lee HK (2005) Sanguiin H-6 blocks endothelial cell growth through inhibition of VEGF binding to VEGF receptor. Arch Pharm Res 28:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Ko H, Kim YJ et al (2016) Inhibition of A2780 human ovarian carcinoma cell proliferation by a Rubus component, sanguiin H-6. J Agric Food Chem 64:801–805

    Article  CAS  PubMed  Google Scholar 

  • Lo Piparo E, Scheib H, Frei N et al (2008) Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase. J Med Chem 51:3555–3561

    Article  CAS  PubMed  Google Scholar 

  • Ludwig IA, Mena P, Calani L et al (2015) New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic Biol Med 89:758–769

    Article  CAS  PubMed  Google Scholar 

  • Luo T, Miranda-Garcia O, Adamson A et al (2016) Development of obesity is reduced in high-fat fed mice fed whole raspberries, raspberry juice concentrate, and a combination of the raspberry phytochemicals ellagic acid and raspberry ketone. J Berry Res 6:213–223

    Article  CAS  Google Scholar 

  • Maksimović JJD, Milivojević JM, Poledica MM et al (2013) Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (autumn bliss and polka). J Food Compos Anal 31:173–179

    Article  CAS  Google Scholar 

  • Malowicki SMM, Martin R, Qian MC (2008) Volatile composition of raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction-gas chromatography-mass spectrometry. J Agric Food Chem 56:4128–4133

    Article  CAS  PubMed  Google Scholar 

  • Manzano S, Williamson G (2010) Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 54:1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Martineau LC, Couture A, Spoor D et al (2006) Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomed 13:612–623

    Article  CAS  Google Scholar 

  • Mazur SP, Sønsteby A, Nes A et al (2014a) Effects of post-flowering environmental variation along an altitudinal gradient on chemical composition of ‘Glen Ample’ red raspberry (Rubus idaeus L.). Europ J Hortic Sci 79:267–277

    Google Scholar 

  • Mazur SP, Sønsteby A, Wold A-B et al (2014b) Post-flowering photoperiod has marked effects on fruit chemical composition in red raspberry (Rubus idaeus). Ann Appl Biol 165:454–465

    Article  CAS  Google Scholar 

  • Mazur SP, Nes A, Wold A-B et al (2014c) Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem 160:233–240

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni L, Perez-Lopez P, Giampieri F et al (2016) The genetic aspects of berries: from field to health. J Sci Food Agric 96:365–371

    Article  PubMed  Google Scholar 

  • McDougall GJ, Shpiro F, Dobson P et al (2005) Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J Agric Food Chem 53:2760–2766

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ, Kulkarni NN, Stewart D (2008a) Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 34:73–80

    Article  PubMed  Google Scholar 

  • McDougall GJ, Ross HA, Ikeji M et al (2008b) Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. J Agric Food Chem 56:3016–3023

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ, Kulkarni NN, Stewart D (2009) Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115:193–199

    Article  CAS  Google Scholar 

  • McDougall GJ, Conner S, Pereira-Caro G et al (2014) Tracking (poly)phenol components from raspberries in ileal fluid. J Agric Food Chem 62:7631–7641

    Article  CAS  PubMed  Google Scholar 

  • McQuinn RP, Giovannoni JJ, Pogson BJ (2015) More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling. Curr Opin Plant Biol 27:172–179

    Article  CAS  PubMed  Google Scholar 

  • Miller MG, Shukitt-Hale B (2012) Berry fruit enhances beneficial signaling in the brain. J Agric Food Chem 60:5709–5715

    Article  CAS  PubMed  Google Scholar 

  • Mineo S, Noguchi A, Nagakura Y et al (2015) Boysenberry polyphenols suppressed elevation of plasma triglyceride levels in rats. J Nutr Sci Vitaminol 61:306–312

    Article  CAS  PubMed  Google Scholar 

  • Moore PP, Burrows C, Fellman J et al (2002) Genotype x environment variation in raspberry fruit aroma volatiles. Acta Hortic 585:511–516

    Article  CAS  Google Scholar 

  • Morimoto C, Satoh Y, Hara M et al (2005) Anti-obese action of raspberry ketone. Life Sci 77:194–204

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz HR (1970) Ratio scales of sugar sweetness. Percept Psychophys 7:315–320

    Article  Google Scholar 

  • Mullen W, McGinn J, Lean MEJ et al (2002) Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J Agric Food Chem 50:5191–5196

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  PubMed  Google Scholar 

  • Oh HH, Hwang KT, Shin MK et al (2007) Oils in the seeds of caneberries produced in Korea. J Am Oil Chem Soc 84:549–555

    Article  CAS  Google Scholar 

  • Oh DR, Kim Y, Choi EJ et al (2016) Antiobesity effects of unripe Rubus coreanus Miquel and its constituents: an in vitro and in vivo characterization of the underlying mechanism. Evid Based Complement Alternat Med 2016:4357656

    Article  PubMed  PubMed Central  Google Scholar 

  • Oomah BD, Ladet S, Godfrey DV et al (2000) Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem 69:187–193

    Article  CAS  Google Scholar 

  • Panchal SK, Ward L, Brown L (2013) Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 52:559–568

    Article  CAS  PubMed  Google Scholar 

  • Park KS (2010) Raspberry ketone increases both lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Planta Med 76:1654–1658

    Article  CAS  PubMed  Google Scholar 

  • Parry J, Su L, Luther M et al (2005) Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J Agric Food Chem 53:566–573

    Article  CAS  PubMed  Google Scholar 

  • Paterson A, Kassim A, McCallum S et al (2013) Environmental and seasonal influences on red raspberry flavor volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet 126:33–48

    Article  CAS  PubMed  Google Scholar 

  • Payyavula RS, Shakya R, Sengoda VG et al (2015) Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol J 13:551–564

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu XL, Gu LW et al (2009) Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet. Mol Nutr Food Res 53:1406–1418

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wilkes S, Rogers T et al (2010) Dietary black raspberry anthocyanins do not alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem 58:3977–3983

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wilkes SE, Rogers TR et al (2011) Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem 58:3970–3976

    Article  CAS  Google Scholar 

  • Radočaj O, Vujasinović V, Dimić E et al (2014) Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after longterm frozen storage of berries can be used as functional food ingredients. Eur J Lipid Sci Technol 116:1015–1024

    Article  CAS  Google Scholar 

  • Rafique MZ, Carvalho E, Stracke R et al (2016) Nonsense mutation inside Anthocyanidin synthase gene controls pigmentation in Yellow Raspberry (Rubus idaeus L.). Front Plant Sci 7:1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Remberg SV, Sønsteby A, Aaby K et al (2010) Influence of postflowering temperature on fruit size and chemical composition of Glen Ample raspberry (Rubus idaeus L.). J Agric Food Chem 58:9120–9128

    Article  CAS  PubMed  Google Scholar 

  • Roberts DD, Acree TE (1996) Effects of heating and cream addition on fresh raspberry aroma using a retronasal aroma simulator and gas chromatography olfactometry. J Agric Food Chem 44:3919–3925

    Article  CAS  Google Scholar 

  • Rodrigo R, Miranda A, Vergara L (2011) Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin Chim Acta 412:410–424

    Article  CAS  PubMed  Google Scholar 

  • Ross HA, McDougall GJ, Stewart D (2007) Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry 68:218–228

    Article  CAS  PubMed  Google Scholar 

  • Rubio A, Rambla JL, Santaella M et al (2008) Cytosolic and plastoglobule-targeted carotenoid cleavage dioxygenases from Crocus sativus are both involved in β-ionone release. J Biol Chem 283:24816–24825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai E, Aoki Y, Yoshimatsu M et al (2016) Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-κΒ ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-α-induced osteoclast formation in vivo. Phytomed 23:828–837

    Article  CAS  Google Scholar 

  • Sangiovanni E, Vrhovsek U, Rossoni G et al (2013) Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One 8:e71762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savi M, Bocchi L, Mena P et al (2017) In vivo administration of urolithin a and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovas Diabet 16:80

    Article  CAS  Google Scholar 

  • Scalzo J, Currie A, Stephens J et al (2008) The anthocyanin composition of different Vaccinium, Ribes and Rubus genotypes. Biofactors 34:13–21

    Article  PubMed  Google Scholar 

  • Scazzocchio B, Vari R, Filesi C et al (2011) Cyanidin-3-O-beta-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPAR-gamma activity in human omental adipocytes. Diabetes 60:2234–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulenburg K, Feller A, Hoffmann T et al (2016) Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry. J Exp Bot 67:2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeram NP, Adams LS, Zhang YJ et al (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J Agric Food Chem 54:9329–9339

    Article  CAS  PubMed  Google Scholar 

  • Seymour EM, Tanone II, Urcuyo-Llanes DE et al (2011) Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J Med Food 14:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Shamaila M, Skura B, Daubeny H et al (1993) Sensory, chemical and gas chromatogtaphic evaluation of five raspberry cultivars. Food Res Int 26:443–449

    Article  CAS  Google Scholar 

  • Simkin AJ, Underwood BA, Auldridge M et al (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136:3504–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JPE (2010) The impact of fruit flavonoids on memory and cognition. Brit J Nutr 104:S40–S47

    Article  CAS  PubMed  Google Scholar 

  • Stavang JA, Freitag S, Foito A et al (2015) Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chamical analyses. Sci Hortic 195:216–225

    Article  CAS  Google Scholar 

  • Stull AJ, Cash CK, Johnson WD et al (2010) Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr 140:1764–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Schuurink RC, Caissard J-C et al (2016) My way: noncanonical biosynthesis pathways for plant volatiles. Trends Plant Sci 21:884–894

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Beard KFM, Nunes-Nesi A et al (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470

    Article  CAS  PubMed  Google Scholar 

  • Takikawa M, Inoue S, Horio F et al (2010) Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr 140:527–533

    Article  CAS  PubMed  Google Scholar 

  • Tavares L, Figueira I, Macedo D et al (2012) Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chem 131:1443–1452

    Article  CAS  Google Scholar 

  • Tavares L, Figueira I, McDougall GJ et al (2013) Neuroprotective effects of digested polyphenols from wild blackberry species. Eur J Nutr 52:225–236

    Article  CAS  PubMed  Google Scholar 

  • Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R et al (2017) Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 61:1500901

    Article  CAS  Google Scholar 

  • Tulio AZ, Chang C, Edirisinghe I et al (2012) Berry fruits modulate endothelial cell migration and angiogenesis via phosphoinositide-3 kinase/protein kinase B pathway in vitro in endothelial cells. J Agric Food Chem 60:5803–5812

    Article  CAS  PubMed  Google Scholar 

  • Villamor RR, Daniels CH, Moore PP et al (2013) Preference mapping of frozen and fresh raspberries. J Food Sci 78:S911–S919

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Lin H-S (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Chen C-T, Wang CY (2009) The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem 112:676–684

    Article  CAS  Google Scholar 

  • Whitley AC, Sweet DH, Walle T (2006) Site-specific accumulation of the cancer preventive dietary polyphenol ellagic acid in epithelial cells of the aerodigestive tract. J Pharm Pharmacol 58:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Brit J Nutr 104:S48–S66

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Beecher GR, Holden JM et al (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026–4037

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Ahotupa M, Määttä P et al (2011) Composition and antioxdative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Res Int 44:2009–2017

    Article  CAS  Google Scholar 

  • Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Hrazdina G (2008) Molecular and biochemical characterization of benzalacetone synthase and chalcone synthase genes and their proteins from raspberry (Rubus idaeus L.). Arch Biochem Biophys 470:139–145

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Schröder G, Schröder J et al (2001) Molecular and biochemical characterization of three aromatic polyketide synthase genes from Rubus idaeus. Plant Mol Biol 46:1–15

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Xia M, Yang Y et al (2011) Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hyper-cholesterolemic individuals. Clin Chem 57:1524–1533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hancock, R.D., Petridis, A., McDougall, G.J. (2018). Raspberry Fruit Chemistry in Relation to Fruit Quality and Human Nutrition. In: Graham, J., Brennan, R. (eds) Raspberry. Springer, Cham. https://doi.org/10.1007/978-3-319-99031-6_7

Download citation

Publish with us

Policies and ethics