Application of Novel Carbonaceous Materials as Support for Fuel Cell Electrocatalysts



Low-temperature fuel cells are potential candidates in alternative energy industry due to their high energy efficiencies and near zero emissions. Typically, carbon supported Pt-based materials are used as electrocatalysts for anode and cathode reactions in low-temperature fuel cells. Carbon black (CB) is the most commonly employed support material for Pt-based electrocatalysts. However, CB materials suffer from significant drawbacks such as poor corrosion resistance and limited mass transport of fuels to active catalyst sites. As an alternative to conventional CB support materials, carbon structures such as graphene, ordered mesoporous carbon, and the so-called green carbon have been successfully used in recent years as supports for the dispersion of fuel cell catalyst nanoparticles. This chapter briefly describes the newly developed carbonaceous nanostructures and their applications in low-temperature fuel cells.


Low-temperature fuel cells PEMFC DMFC Carbonaceous support materials Pt electrocatalysts Oxygen reduction reaction Methanol oxidation reaction Carbon black Graphene Ordered mesoporous carbon Green carbon Synthesis techniques Nanoparticles dispersion Hard template Soft template CVD Biomass Chemical reduction Surface functionalization Hybrid nanocomposites 



The authors gratefully acknowledge Director, VSSC and Deputy Director, PCM, VSSC for granting permission to publish this work.


  1. 1.
    Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007CrossRefGoogle Scholar
  2. 2.
    Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853CrossRefGoogle Scholar
  3. 3.
    Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG (2016) Advances in stationary and portable fuel cell applications. Int J Hydrog Energy 41(37):16509–16522CrossRefGoogle Scholar
  4. 4.
    O’Hayre R, Cha S-W, Prinz FB, Colella W (2016) Fuel cell fundamentals. Wiley, HobokenCrossRefGoogle Scholar
  5. 5.
    Dicks AL, Rand DAJ (2018) Fuel cell systems explained. Wiley, New YorkCrossRefGoogle Scholar
  6. 6.
    Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160CrossRefPubMedGoogle Scholar
  7. 7.
    Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119CrossRefGoogle Scholar
  8. 8.
    Basri S, Kamarudin SK, Daud WRW, Yaakub Z (2010) Nanocatalyst for direct methanol fuel cell (DMFC). Int J Hydrog Energy 35(15):7957–7970CrossRefGoogle Scholar
  9. 9.
    Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2(18):6266–6291CrossRefGoogle Scholar
  10. 10.
    Bharti A, Cheruvally G (2017) Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance. J Power Sources 360:196–205CrossRefGoogle Scholar
  11. 11.
    Yuan X, Ding X-L, Wang C-Y, Ma Z-F (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6(4):1105–1124CrossRefGoogle Scholar
  12. 12.
    Xu JB, Zhao TS (2013) Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells. RSC Adv 3(1):16–24CrossRefGoogle Scholar
  13. 13.
    Antolini E (2016) Nitrogen-doped carbons by sustainable N-and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells. Renew Sust Energ Rev 58:34–51CrossRefGoogle Scholar
  14. 14.
    Dhakate SR, Chauhan N, Sharma S, Tawale J, Singh S, Sahare PD, Mathur RB (2011) An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49(6):1946–1954CrossRefGoogle Scholar
  15. 15.
    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRefPubMedGoogle Scholar
  16. 16.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefPubMedGoogle Scholar
  17. 17.
    Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115(7):2483–2531CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Randviir EP, Brownson DAC, Banks CE (2014) A decade of graphene research: production, applications and outlook. Mater Today 17(9):426–432CrossRefGoogle Scholar
  19. 19.
    Zhong YL, Tian Z, Simon GP, Li D (2015) Scalable production of graphene via wet chemistry: progress and challenges. Mater Today 18(2):73–78CrossRefGoogle Scholar
  20. 20.
    Avouris P, Dimitrakopoulos C (2012) Graphene: synthesis and applications. Mater Today 15(3):86–97CrossRefGoogle Scholar
  21. 21.
    Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5(1):38–51CrossRefPubMedGoogle Scholar
  22. 22.
    Selvakumar D, Tripathi SK, Singh R, Nasim M (2007) Solvo-thermal preparation of cadmium telluride nanoparticles from a novel single source molecular precursor. Chem Lett 37(1):34–35CrossRefGoogle Scholar
  23. 23.
    Das S, Sudhagar P, Kang YS, Choi W (2014) Graphene synthesis and application for solar cells. J Mater Res 29(3):299–319CrossRefGoogle Scholar
  24. 24.
    Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRefGoogle Scholar
  25. 25.
    Van Noorden R (2012) Production: beyond sticky tape. Nature 483:S32. Scholar
  26. 26.
    Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186CrossRefGoogle Scholar
  27. 27.
    Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):95CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625–19628CrossRefGoogle Scholar
  29. 29.
    Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322CrossRefGoogle Scholar
  30. 30.
    Wu W, Liu Z, Jauregui LA, Yu Q, Pillai R, Cao H, Bao J, Chen YP, Pei S-S (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensor Actuat B Chem 150(1):296–300CrossRefGoogle Scholar
  31. 31.
    Van Nang L, Kim E-T (2012) Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition. J Electrochem Soc 159(4):K93–K96CrossRefGoogle Scholar
  32. 32.
    Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21(22):2328–2333CrossRefGoogle Scholar
  33. 33.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  34. 34.
    Iqbal MZ, Abdala AA (2013) Thermally reduced graphene: synthesis, characterization and dye removal applications. RSC Adv 3(46):24455–24464CrossRefGoogle Scholar
  35. 35.
    Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Eur J Inorg Chem 31(2):1481–1487Google Scholar
  36. 36.
    Choi SM, Seo MH, Kim HJ, Kim WB (2011) Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49(3):904–909CrossRefGoogle Scholar
  37. 37.
    Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20(39):8467–8469CrossRefGoogle Scholar
  38. 38.
    Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8(5):4720–4729CrossRefPubMedGoogle Scholar
  39. 39.
    Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B Environ 123:52–68CrossRefGoogle Scholar
  40. 40.
    Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358CrossRefPubMedGoogle Scholar
  41. 41.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  42. 42.
    Ramachandran R, Saranya M, Velmurugan V, Raghupathy BPC, Jeong SK, Grace AN (2015) Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications. Appl Energy 153:22–31CrossRefGoogle Scholar
  43. 43.
    Sridhar V, Jeon J-H, Oh I-K (2010) Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon 48(10):2953–2957CrossRefGoogle Scholar
  44. 44.
    Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3(4):1127–1133CrossRefPubMedGoogle Scholar
  45. 45.
    Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434CrossRefGoogle Scholar
  46. 46.
    Alanyalıoğlu M, Segura JJ, Oro-Sole J, Casan-Pastor N (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1):142–152CrossRefGoogle Scholar
  47. 47.
    Wang G, Wang B, Park J, Wang Y, Sun B, Yao J (2009) Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47(14):3242–3246CrossRefGoogle Scholar
  48. 48.
    Cooper AJ, Wilson NR, Kinloch IA, Dryfe RAW (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350CrossRefGoogle Scholar
  49. 49.
    Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem Commun 11(4):846–849CrossRefGoogle Scholar
  50. 50.
    Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20(34):7114–7117CrossRefGoogle Scholar
  51. 51.
    Hsieh SH, Hsu MC, Liu WL, Chen WJ (2013) Study of Pt catalyst on graphene and its application to fuel cell. Appl Surf Sci 277:223–230CrossRefGoogle Scholar
  52. 52.
    Galema SA (1997) Microwave chemistry. Chem Soc Rev 26(3):233–238CrossRefGoogle Scholar
  53. 53.
    Bharti A, Cheruvally G, Muliankeezhu S (2017) Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application. Int J Hydrog Energy 42(16):11622–11631CrossRefGoogle Scholar
  54. 54.
    Zhao L, Wang Z-B, Li J-L, Zhang J-J, Sui X-L, Zhang L-M (2015) A newly-designed sandwich-structured graphene–Pt–graphene catalyst with improved electrocatalytic performance for fuel cells. J Mater Chem A 3(10):5313–5320CrossRefGoogle Scholar
  55. 55.
    Pullamsetty A, Sundara R (2016) Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium. J Colloid Interface Sci 479:260–270CrossRefPubMedGoogle Scholar
  56. 56.
    Pullamsetty A, Subbiah M, Sundara R (2015) Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells. Int J Hydrog Energy 40(32):10251–10261CrossRefGoogle Scholar
  57. 57.
    Oztuna FES, Barim SB, Bozbag SE, Yu H, Aindow M, Unal U, Erkey C (2017) Graphene aerogel supported Pt electrocatalysts for oxygen reduction reaction by supercritical deposition. Electrochim Acta 250:174–184CrossRefGoogle Scholar
  58. 58.
    Daş E, Gürsel SA, Şanli LI, Yurtcan AB (2016) Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. Int J Hydrog Energy 41(23):9755–9761CrossRefGoogle Scholar
  59. 59.
    Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S (2010) “Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources 195(15):4628–4633CrossRefGoogle Scholar
  60. 60.
    Zhu J, Xiao M, Zhao X, Liu C, Ge J, Xing W (2015) Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy 13:318–326CrossRefGoogle Scholar
  61. 61.
    Guo S, Dong S, Wang E (2009) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1):547–555CrossRefGoogle Scholar
  62. 62.
    Jafri RI, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2015) Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int J Hydrog Energy 40(12):4337–4348CrossRefGoogle Scholar
  63. 63.
    Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746CrossRefGoogle Scholar
  64. 64.
    Eftekhari A, Fan Z (2017) Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater Chem Front 1(6):1001–1027CrossRefGoogle Scholar
  65. 65.
    Ambrosio EP, Francia C, Manzoli M, Penazzi N, Spinelli P (2008) Platinum catalyst supported on mesoporous carbon for PEMFC. Int J Hydrog Energy 33(12):3142–3145CrossRefGoogle Scholar
  66. 66.
    Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13(9):677–681CrossRefGoogle Scholar
  67. 67.
    Ryoo R, Joo SH (2004) Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Stud Surf Sci Catal 148:241–260CrossRefGoogle Scholar
  68. 68.
    Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 14(4):478–486CrossRefGoogle Scholar
  69. 69.
    Yang H, Zhao D (2005) Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem 15(12):1217–1231Google Scholar
  70. 70.
    Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18(14):1793–1805CrossRefGoogle Scholar
  71. 71.
    Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094CrossRefGoogle Scholar
  72. 72.
    Chang H, Joo SH, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cell applications. J Mater Chem 17(30):3078–3088CrossRefGoogle Scholar
  73. 73.
    Xu W, Wu Z, Tao S (2016) Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. J Mater Chem A 4(42):16272–16287CrossRefGoogle Scholar
  74. 74.
    Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem Soc Rev 42(9):4054–4070CrossRefPubMedGoogle Scholar
  75. 75.
    Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88(1–2):1–24Google Scholar
  76. 76.
    Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski AW, Konno H, Inagaki M (2010) A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48(10):2690–2707CrossRefGoogle Scholar
  77. 77.
    Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl 47(20):3696–3717CrossRefPubMedGoogle Scholar
  78. 78.
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412(6843):169CrossRefPubMedGoogle Scholar
  79. 79.
    Li Z, Jaroniec M (2001) Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J Am Chem Soc 123(37):9208–9209CrossRefPubMedGoogle Scholar
  80. 80.
    Li Z, Jaroniec M (2001) Silica gel-templated mesoporous carbons prepared from mesophase pitch and polyacrylonitrile. Carbon 39(13):2080–2082CrossRefGoogle Scholar
  81. 81.
    Li Z, Jaroniec M (2003) Synthesis and adsorption properties of colloid-imprinted carbons with surface and volume mesoporosity. Chem Mater 15(6):1327–1333CrossRefGoogle Scholar
  82. 82.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713CrossRefGoogle Scholar
  83. 83.
    Banham D, Feng F, Burt J, Alsrayheen E, Birss V (2010) Bimodal, templated mesoporous carbons for capacitor applications. Carbon 48(4):1056–1063CrossRefGoogle Scholar
  84. 84.
    Kim CH, Lee D-K, Pinnavaia TJ (2004) Graphitic mesostructured carbon prepared from aromatic precursors. Langmuir 20(13):5157–5159CrossRefPubMedGoogle Scholar
  85. 85.
    Banham D, Feng F, Pei K, Ye S, Birss V (2013) Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. J Mater Chem A 1(8):2812–2820CrossRefGoogle Scholar
  86. 86.
    Zhai Y, Wan Y, Cheng Y, Shi Y, Zhang F, Tu B, Zhao D (2008) The influence of carbon source on the wall structure of ordered mesoporous carbons. J Porous Mater 15(5):601–611CrossRefGoogle Scholar
  87. 87.
    Li X, Forouzandeh F, Fürstenhaupt T, Banham D, Feng F, Ye S, Kwok DY, Birss V (2018) New insights into the surface properties of hard-templated ordered mesoporous carbons. Carbon 127:707–717CrossRefGoogle Scholar
  88. 88.
    Lei Z, Xiao Y, Dang L, Lu M, You W (2006) Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. Microporous Mesoporous Mater 96(1–3):127–134CrossRefGoogle Scholar
  89. 89.
    Zhang S, Chen L, Zhou S, Zhao D, Wu L (2010) Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chem Mater 22(11):3433–3440CrossRefGoogle Scholar
  90. 90.
    Li Y, Yang Y, Shi J, Ruan M (2008) Synthesis and characterization of hollow mesoporous carbon spheres with a highly ordered bicontinuous cubic mesostructure. Microporous Mesoporous Mater 112(1–3):597–602CrossRefGoogle Scholar
  91. 91.
    Gierszal KP, Jaroniec M (2006) Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J Am Chem Soc 128(31):10026–10027CrossRefPubMedGoogle Scholar
  92. 92.
    Chuenchom L, Kraehnert R, Smarsly BM (2012) Recent progress in soft-templating of porous carbon materials. Soft Matter 8(42):10801–10812CrossRefGoogle Scholar
  93. 93.
    Wang Q, Zhang W, Mu Y, Zhong L, Meng Y, Sun Y (2014) Synthesis of ordered mesoporous carbons with tunable pore size by varying carbon precursors via soft-template method. Microporous Mesoporous Mater 197:109–115CrossRefGoogle Scholar
  94. 94.
    de Aa Soler-Illia GJ, Crepaldi EL, Grosso D, Sanchez C (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8(1):109–126CrossRefGoogle Scholar
  95. 95.
    Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860CrossRefPubMedGoogle Scholar
  96. 96.
    Wan Y, Shi Y, Zhao D (2007) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20(3):932–945CrossRefGoogle Scholar
  97. 97.
    Ma T-Y, Liu L, Yuan Z-Y (2013) Direct synthesis of ordered mesoporous carbons. Chem Soc Rev 42(9):3977–4003CrossRefPubMedGoogle Scholar
  98. 98.
    Zhang F, Meng Y, Gu D, Yan Y, Chen Z, Tu B, Zhao D (2006) An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem Mater 18(22):5279–5288CrossRefGoogle Scholar
  99. 99.
    Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed Engl 117(43):7215–7221CrossRefGoogle Scholar
  100. 100.
    Hillmyer MA, Bates FS, Almdal K, Mortensen K, Ryan AJ, Fairclough JPA (1996) Complex phase behavior in solvent-free nonionic surfactants. Science 271(5251):976–978CrossRefGoogle Scholar
  101. 101.
    Bucknall DG, Anderson HL (2003) Polymers get organized. Science 302(5652):1904–1905CrossRefPubMedGoogle Scholar
  102. 102.
    Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20(3):682–737CrossRefGoogle Scholar
  103. 103.
    Liang C, Hong K, Guiochon GA, Mays JW, Dai S (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed Engl 43(43):5785–5789CrossRefPubMedGoogle Scholar
  104. 104.
    Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem Commun (16):2125–2127Google Scholar
  105. 105.
    Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic− organic self-assembly. Chem Mater 18(18):4447–4464CrossRefGoogle Scholar
  106. 106.
    Wang Y, He C, Brouzgou A, Liang Y, Fu R, Wu D, Tsiakaras P, Song S (2012) A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation. J Power Sources 200:8–13CrossRefGoogle Scholar
  107. 107.
    Zhao G, Zhao TS, Xu J, Lin Z, Yan X (2017) Impact of pore size of ordered mesoporous carbon FDU-15-supported platinum catalysts on oxygen reduction reaction. Int J Hydrog Energy 42(5):3325–3334CrossRefGoogle Scholar
  108. 108.
    Wan Y, Shi Y, Zhao D (2007) Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun (9):897–926Google Scholar
  109. 109.
    Yu C, Fan J, Tian B, Stucky GD, Zhao D (2003) Synthesis of mesoporous silica from commercial poly (ethylene oxide)/poly (butylene oxide) copolymers: toward the rational design of ordered mesoporous materials. J Phys Chem B 107(48):13368–13375CrossRefGoogle Scholar
  110. 110.
    Wan Y, Shi Y, Zhao D (2008) Ordered mesoporous polymers and carbon molecular sieves. Chem Mater 20:932–945CrossRefGoogle Scholar
  111. 111.
    Deng Y, Yu T, Wan Y, Shi Y, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly (ethylene oxide)-b-polystyrene. J Am Chem Soc 129(6):1690–1697CrossRefPubMedGoogle Scholar
  112. 112.
    Deng Y, Liu C, Gu D, Yu T, Tu B, Zhao D (2008) Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer. J Mater Chem 18(1):91–97CrossRefGoogle Scholar
  113. 113.
    Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1(6):16023CrossRefGoogle Scholar
  114. 114.
    Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155(2):95–110CrossRefGoogle Scholar
  115. 115.
    Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1(1):27–40CrossRefGoogle Scholar
  116. 116.
    Tang J, Liu J, Torad NL, Kimura T, Yamauchi Y (2014) Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9(3):305–323CrossRefGoogle Scholar
  117. 117.
    Guha A, Lu W, Zawodzinski TA Jr, Schiraldi DA (2007) Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon 45(7):1506–1517CrossRefGoogle Scholar
  118. 118.
    Salgado JRC, Quintana JJ, Calvillo L, Lázaro MJ, Cabot PL, Esparbé I, Pastor E (2008) Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: the influence of functionalization of the support. Phys Chem Chem Phys 10(45):6796–6806CrossRefPubMedGoogle Scholar
  119. 119.
    Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A (2015) Metal–support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7(2):1170–1179CrossRefPubMedGoogle Scholar
  120. 120.
    Xiao C, Chen X, Fan Z, Liang J, Zhang B, Ding S (2016) Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction. Nanotechnology 27(44):445402CrossRefPubMedGoogle Scholar
  121. 121.
    Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF (2010) Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem 2(4):286CrossRefPubMedGoogle Scholar
  122. 122.
    Zhou J-H, He J-P, Ji Y-J, Dang W-J, Liu X-L, Zhao G-W, Zhang C-X, Zhao J-S, Fu Q-B, Hu H-P (2007) CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. Electrochim Acta 52(14):4691–4695CrossRefGoogle Scholar
  123. 123.
    Li F, Wang H, Zhao X, Li B, Zhang Y (2016) Microwave-assisted route for the preparation of Pd anchored on surfactant functionalized ordered mesoporous carbon and its electrochemical applications. RSC Adv 6(75):70810–70815CrossRefGoogle Scholar
  124. 124.
    Zhang Y, Bo X, Luhana C, Guo L (2011) Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites. Electrochim Acta 56(17):5849–5854CrossRefGoogle Scholar
  125. 125.
    Momčilović M, Stojmenović M, Gavrilov N, Pašti I, Mentus S, Babić B (2014) Complex electrochemical investigation of ordered mesoporous carbon synthesized by soft-templating method: charge storage and electrocatalytical or Pt-electrocatalyst supporting behavior. Electrochim Acta 125:606–614CrossRefGoogle Scholar
  126. 126.
    Cao J, Chen Z, Xu J, Wang W, Chen Z (2013) Mesoporous carbon synthesized from dual colloidal silica/block copolymer template approach as the support of platinum nanoparticles for direct methanol fuel cells. Electrochim Acta 88:184–192CrossRefGoogle Scholar
  127. 127.
    Zhang C, Xu L, Shan N, Sun T, Chen J, Yan Y (2014) Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal 4(6):1926–1930CrossRefGoogle Scholar
  128. 128.
    Joo SH, Kwon K, You DJ, Pak C, Chang H, Kim JM (2009) Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions. Electrochim Acta 54(24):5746–5753CrossRefGoogle Scholar
  129. 129.
    Joo SH, Lee HI, You DJ, Kwon K, Kim JH, Choi YS, Kang M, Kim JM, Pak C, Chang H (2008) Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon 46(15):2034–2045CrossRefGoogle Scholar
  130. 130.
    Ahn C-Y, Cheon J-Y, Joo S-H, Kim J (2013) Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells. J Power Sources 222:477–482CrossRefGoogle Scholar
  131. 131.
    Kim N-I, Cheon JY, Kim JH, Seong J, Park J-Y, Joo SH, Kwon K (2014) Impact of framework structure of ordered mesoporous carbons on the performance of supported Pt catalysts for oxygen reduction reaction. Carbon 72:354–364CrossRefGoogle Scholar
  132. 132.
    Calvillo L, Lázaro MJ, García-Bordejé E, Moliner R, Cabot PL, Esparbé I, Pastor E, Quintana JJ (2007) Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J Power Sources 169(1):59–64CrossRefGoogle Scholar
  133. 133.
    Morales-Acosta D, Rodríguez-Varela FJ, Benavides R (2016) Template-free synthesis of ordered mesoporous carbon: application as support of highly active Pt nanoparticles for the oxidation of organic fuels. Int J Hydrog Energy 41(5):3387–3398CrossRefGoogle Scholar
  134. 134.
    Samiee L, Shoghi F, Maghsodi A (2014) In situ functionalisation of mesoporous carbon electrodes with carbon nanotubes for proton exchange membrane fuel-cell application. Mater Chem Phys 143(3):1228–1235CrossRefGoogle Scholar
  135. 135.
    Nsabimana A, Bo X, Zhang Y, Li M, Han C, Guo L (2014) Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support. J Colloid Interface Sci 428:133–140CrossRefPubMedGoogle Scholar
  136. 136.
    Song P, Zhu L, Bo X, Wang A, Wang G, Guo L (2014) Pt nanoparticles incorporated into phosphorus-doped ordered mesoporous carbons: enhanced catalytic activity for methanol electrooxidation. Electrochim Acta 127:307–314CrossRefGoogle Scholar
  137. 137.
    Bruno MM, Petruccelli MA, Viva FA, Corti HR (2013) Mesoporous carbon supported PtRu as anode catalyst for direct methanol fuel cell: polarization measurements and electrochemical impedance analysis of mass transport. Int J Hydrog Energy 38(10):4116–4123CrossRefGoogle Scholar
  138. 138.
    Hung C-T, Liou Z-H, Veerakumar P, Wu P-H, Liu T-C, Liu S-B (2016) Ordered mesoporous carbon supported bifunctional PtM (M= Ru, Fe, Mo) electrocatalysts for a fuel cell anode. Chin J Catal 37(1):43–53CrossRefGoogle Scholar
  139. 139.
    Volotskova O, Levchenko I, Shashurin A, Raitses Y, Ostrikov K, Keidar M (2010) Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas. Nanoscale 2(10):2281–2285CrossRefPubMedGoogle Scholar
  140. 140.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRefPubMedGoogle Scholar
  141. 141.
    Titirici M-M, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822CrossRefGoogle Scholar
  142. 142.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1(3):356–361CrossRefGoogle Scholar
  143. 143.
    Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285CrossRefPubMedGoogle Scholar
  144. 144.
    Falco C, Baccile N, Titirici M-M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13(11):3273–3281CrossRefGoogle Scholar
  145. 145.
    Fellinger TP, White RJ, Titirici MM, Antonietti M (2012) Borax-mediated formation of carbon aerogels from glucose. Adv Funct Mater 22(15):3254–3260CrossRefGoogle Scholar
  146. 146.
    Liu X, Antonietti M (2014) Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69:460–466CrossRefGoogle Scholar
  147. 147.
    Xiao Y, Dong H, Lei B, Qiu H, Liu Y, Zheng M (2015) Ordered mesoporous carbons with fiber-and rod-like morphologies for supercapacitor electrode materials. Mater Lett 138:37–40CrossRefGoogle Scholar
  148. 148.
    Ting C-C, Wu H-Y, Vetrivel S, Saikia D, Pan Y-C, Fey GTK, Kao H-M (2010) A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic–inorganic self-assembly of triblock copolymer, sucrose and silica. Microporous Mesoporous Mater 128(1–3):1–11CrossRefGoogle Scholar
  149. 149.
    Sivadas DL, Vijayan S, Rajeev R, Ninan KN, Prabhakaran K (2016) Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance. Carbon 109:7–18CrossRefGoogle Scholar
  150. 150.
    Yu L, Brun N, Sakaushi K, Eckert J, Titirici MM (2013) Hydrothermal nanocasting: synthesis of hierarchically porous carbon monoliths and their application in lithium–sulfur batteries. Carbon 61:245–253CrossRefGoogle Scholar
  151. 151.
    Yu L, Falco C, Weber J, White RJ, Howe JY, Titirici M-M (2012) Carbohydrate-derived hydrothermal carbons: a thorough characterization study. Langmuir 28(33):12373–12383CrossRefPubMedGoogle Scholar
  152. 152.
    Wu Z-Y, Liang H-W, Chen L-F, Hu B-C, Yu S-H (2015) Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Acc Chem Res 49(1):96–105CrossRefPubMedGoogle Scholar
  153. 153.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):5438–5466CrossRefPubMedGoogle Scholar
  154. 154.
    Liu Q, Chen C, Pan F, Zhang J (2015) Highly efficient oxygen reduction on porous nitrogen-doped nanocarbons directly synthesized from cellulose nanocrystals and urea. Electrochim Acta 170:234–241CrossRefGoogle Scholar
  155. 155.
    Li S, Xu W, Cheng P, Luo J, Zhou D, Li J, Li R, Yuan D (2017) Bacterial cellulose derived iron and phosphorus co-doped carbon nanofibers as an efficient oxygen reduction reaction electrocatalysts. Synth Met 223:137–144CrossRefGoogle Scholar
  156. 156.
    Liang H-W, Wu Z-Y, Chen L-F, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376CrossRefGoogle Scholar
  157. 157.
    Lai F, Miao YE, Zuo L, Lu H, Huang Y, Liu T (2016) Biomass-derived nitrogen-doped carbon nanofiber network: a facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode. Small 12(24):3235–3244CrossRefPubMedGoogle Scholar
  158. 158.
    Mulyadi A, Zhang Z, Dutzer M, Liu W, Deng Y (2017) Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution. Nano Energy 32:336–346CrossRefGoogle Scholar
  159. 159.
    Wu Z-Y, Liang H-W, Li C, Hu B-C, Xu X-X, Wang Q, Chen J-F, Yu S-H (2014) Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res 7(12):1861–1872CrossRefGoogle Scholar
  160. 160.
    Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211CrossRefGoogle Scholar
  161. 161.
    Sun Y, Wang X, Ding C, Cheng W, Chen C, Hayat T, Alsaedi A, Hu J, Wang X (2016) Direct synthesis of bacteria-derived carbonaceous nanofibers as a highly efficient material for radionuclides elimination. ACS Sustain Chem Eng 4(9):4608–4616CrossRefGoogle Scholar
  162. 162.
    Wu Z-Y, Hu B-C, Wu P, Liang H-W, Yu Z-L, Lin Y, Zheng Y-R, Li Z, Yu S-H (2016) Mo 2 C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution. NPG Asia Mater 8(7):e288CrossRefGoogle Scholar
  163. 163.
    Rybarczyk MK, Gontarek E, Lieder M, Titirici M-M (2018) Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost. Appl Surf Sci 435:543–551CrossRefGoogle Scholar
  164. 164.
    Kucinska A, Golembiewski R, Lukaszewicz JP (2014) Synthesis of N-rich activated carbons from chitosan by chemical activation. Sci Adv Mater 6(2):290–297CrossRefGoogle Scholar
  165. 165.
    Wang Y-Y, Hou B-H, Lü H-Y, Wan F, Wang J, Wu X-L (2015) Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Adv 5(118):97427–97434CrossRefGoogle Scholar
  166. 166.
    Chen P, Wang L-K, Wang G, Gao M-R, Ge J, Yuan W-J, Shen Y-H, Xie A-J, Yu S-H (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7(12):4095–4103CrossRefGoogle Scholar
  167. 167.
    Liu X, Zhou Y, Zhou W, Li L, Huang S, Chen S (2015) Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 7(14):6136–6142CrossRefPubMedGoogle Scholar
  168. 168.
    Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120(4):2079–2086CrossRefGoogle Scholar
  169. 169.
    Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3(35):18154–18162CrossRefGoogle Scholar
  170. 170.
    Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324CrossRefGoogle Scholar
  171. 171.
    Song H, Li H, Wang H, Key J, Ji S, Mao X, Wang R (2014) Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochim Acta 147:520–526CrossRefGoogle Scholar
  172. 172.
    Wang R, Wang K, Wang Z, Song H, Wang H, Ji S (2015) Pig bones derived N-doped carbon with multi-level pores as electrocatalyst for oxygen reduction. J Power Sources 297:295–301CrossRefGoogle Scholar
  173. 173.
    Fang Y, Wang H, Yu H, Peng F (2016) From chicken feather to nitrogen and sulfur co-doped large surface bio-carbon flocs: an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 213:273–282CrossRefGoogle Scholar
  174. 174.
    Gao A, Guo N, Yan M, Li M, Wang F, Yang R (2018) Hierarchical porous carbon activated by CaCO3 from pigskin collagen for CO2 and H2 adsorption. Microporous Mesoporous Mater 260:172–179CrossRefGoogle Scholar
  175. 175.
    Guo C, Liao W, Li Z, Chen C (2015) Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon 85:279–288CrossRefGoogle Scholar
  176. 176.
    Wang H, Wang K, Song H, Li H, Ji S, Wang Z, Li S, Wang R (2015) N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Adv 5(60):48965–48970CrossRefGoogle Scholar
  177. 177.
    Guo C, Hu R, Liao W, Li Z, Sun L, Shi D, Li Y, Chen C (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238CrossRefGoogle Scholar
  178. 178.
    Wu H, Geng J, Ge H, Guo Z, Wang Y, Zheng G (2016) Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts. Adv Energy Mater 6(20):1600794, 1–8CrossRefGoogle Scholar
  179. 179.
    Lu Y, Zhu N, Yin F, Yang T, Wu P, Dang Z, Liu M, Wei X (2017) Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells. Biosens Bioelectron 98:350–356CrossRefPubMedGoogle Scholar
  180. 180.
    Shao Z, Zhang W, An D, Zhang G, Wang Y (2015) Pyrolyzed egg yolk as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. RSC Adv 5(118):97508–97511CrossRefGoogle Scholar
  181. 181.
    Chaudhari KN, Song MY, Yu JS (2014) Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13):2625–2636CrossRefPubMedGoogle Scholar
  182. 182.
    Zhao Z-Q, Xiao P-W, Zhao L, Liu Y, Han B-H (2015) Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption. RSC Adv 5(90):73980–73988CrossRefGoogle Scholar
  183. 183.
    Liu X, Zhou W, Yang L, Li L, Zhang Z, Ke Y, Chen S (2015) Correction: nitrogen and sulfur co-doped porous carbon derived from human hair as highly efficient metal-free electrocatalysts for hydrogen evolution reactions. J Mater Chem A 3(18):10135–10135CrossRefGoogle Scholar
  184. 184.
    Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, Chen S, Qi X, Wei Z (2015) Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J Am Chem Soc 137(16):5414–5420CrossRefPubMedGoogle Scholar
  185. 185.
    Liang J, Du X, Gibson C, Du XW, Qiao SZ (2013) N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv Mater 25(43):6226–6231CrossRefPubMedGoogle Scholar
  186. 186.
    Gong X, Liu S, Ouyang C, Strasser P, Yang R (2015) Nitrogen-and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal 5(2):920–927CrossRefGoogle Scholar
  187. 187.
    Ye D, Wang L, Zhang R, Liu B, Wang Y, Kong J (2015) Facile preparation of N-doped mesocellular graphene foam from sludge flocs for highly efficient oxygen reduction reaction. J Mater Chem A 3(29):15171–15176CrossRefGoogle Scholar
  188. 188.
    Zhou T, Wang H, Ji S, Linkov V, Wang R (2014) Soybean-derived mesoporous carbon as an effective catalyst support for electrooxidation of methanol. J Power Sources 248:427–433CrossRefGoogle Scholar
  189. 189.
    Zhou T, Wang H, Ji S, Feng H, Wang R (2014) Synthesis of mesoporous carbon from okara and application as electrocatalyst support. Fuel Cells 14(2):296–302CrossRefGoogle Scholar
  190. 190.
    Zhao X, Zhu J, Liang L, Li C, Liu C, Liao J, Xing W (2014) Biomass-derived N-doped carbon and its application in electrocatalysis. Appl Catal B Environ 154–155:177–182CrossRefGoogle Scholar
  191. 191.
    Yan Z, Zhang M, Xie J, Wang H, Wei W (2013) Smaller Pt particles supported on mesoporous bowl-like carbon for highly efficient and stable methanol oxidation and oxygen reduction reaction. J Power Sources 243:48–53CrossRefGoogle Scholar
  192. 192.
    Cheng K, Kou Z, Zhang J, Jiang M, Wu H, Hu L, Yang X, Pan M, Mu S (2015) Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. J Mater Chem A 3(26):14007–14014CrossRefGoogle Scholar
  193. 193.
    Liu H, Cao Y, Wang F, Zhang W, Huang Y (2014) Pig bone derived hierarchical porous carbon-supported platinum nanoparticles with superior electrocatalytic activity towards oxygen reduction reaction. Electroanalysis 26(8):1831–1839CrossRefGoogle Scholar
  194. 194.
    Cheng Y, Lu H, Zhang K, Yang F, Dai W, Liu C, Dong H, Zhang X (2018) Fabricating Pt-decorated three dimensional N-doped carbon porous microspherical cavity catalyst for advanced oxygen reduction reaction. Carbon 128:38–45CrossRefGoogle Scholar
  195. 195.
    Yang R, Qiu X, Zhang H, Li J, Zhu W, Wang Z, Huang X, Chen L (2005) Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol. Carbon 43(1):11–16CrossRefGoogle Scholar
  196. 196.
    Afraz A, Rafati AA, Hajian A, Khoshnood M (2015) Electrodeposition of Pt nanoparticles on new porous graphitic carbon nanostructures prepared from biomass for fuel cell and methanol sensing applications. Electrocatalysis 6(2):220–228CrossRefGoogle Scholar
  197. 197.
    Yang H, Wang H, Ji S, Ma Y, Linkov V, Wang R (2014) Nanostructured Pt supported on cocoon-derived carbon as an efficient electrocatalyst for methanol oxidation. J Solid State Chem 18(6):1503–1512Google Scholar
  198. 198.
    Lobos MLN, Sieben JM, Comignani V, Duarte M, Volpe MA, Moyano EL (2016) Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol. Int J Hydrog Energy 41(25):10695–10706CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Propellants, Polymers, Chemicals and Materials EntityVikram Sarabhai Space CentreThiruvananthapuramIndia

Personalised recommendations