Skip to main content

Electrocatalysis of Alternative Liquid Fuels for PEM Direct Oxidation Fuel Cells

  • Chapter
  • First Online:
Advanced Electrocatalysts for Low-Temperature Fuel Cells

Abstract

The direct oxidation of liquid fuels such as methanol, ethanol, ethylene glycol, formic acid and glycerol in fuel cell has attracted increasing interest as power source for portable applications in recent days. These fuels are economically and environmental friendly, exhibit high volumetric energy density, facile storing and handling as compared to hydrogen fuel. Based on their feeding directly and electro-oxidation process, these are termed as direct methanol fuel cell (DMFC), direct ethanol fuel cell (DEFC), direct ethylene glycol fuel cell (DEGFC), direct formic acid fuel cell (DFAFC) and direct glycerol fuel cell (DGEFC), which are discussed in the chapter. The oxidation reaction of these fuels at low temperature in acid electrolytes is discussed in detail. The various binary and ternary Pt-based catalysts which can ease the oxidation of these liquid fuels are presented with plausible reaction mechanism. The various parameters driving the fuel cell such as catalyst loading, fuel flow rates, operating temperature and the performance in terms of current–voltage characteristics, stability and durability of the fuel cells are discussed including the recent commercial development in the field. Authors also presented their view and further work required wherever deemed fit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basu S (2007) Recent trends in fuel cell science and technology. Springer, New York

    Book  Google Scholar 

  2. Dillon R, Srinivasan S, Aricò AS, Antonucci V (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126. https://doi.org/10.1016/j.jpowsour.2003.09.032

    Article  CAS  Google Scholar 

  3. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31. https://doi.org/10.1016/S0022-0728(98)00197-1

    Article  CAS  Google Scholar 

  4. McNicol B, Rand DA, Williams K (1999) Direct methanol–air fuel cells for road transportation. J Power Sources 83:15–31. https://doi.org/10.1016/S0378-7753(99)00244-X

    Article  CAS  Google Scholar 

  5. Ogden JM, Steinbugler MM, Kreutz TG (1999) Comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. J Power Sources 79:143–168. https://doi.org/10.1016/S0378-7753(99)00057-9

    Article  CAS  Google Scholar 

  6. Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36. https://doi.org/10.1002/cssc.201000182

    Article  CAS  PubMed  Google Scholar 

  7. Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. J Electroanal Chem Interfacial Electrochem 257:9–45

    Article  CAS  Google Scholar 

  8. Tiwari JN, Tiwari RN, Singh G, Kim KS (2013) Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2:553–578

    Article  CAS  Google Scholar 

  9. Editor G, Russell A, Shen Y et al (2008) Electrocatalysis: theory and experiment at the interface. Phys Chem Chem Phys 10:3607. https://doi.org/10.1039/b808799g

    Article  CAS  Google Scholar 

  10. Han SB, Song YJ, Lee JM et al (2008) Platinum nanocube catalysts for methanol and ethanol electrooxidation. Electrochem Commun 10:1044–1047. https://doi.org/10.1016/j.elecom.2008.04.034

    Article  CAS  Google Scholar 

  11. Tiwari JN, Pan F-M, Tiwari RN, Nandi S (2008) Facile synthesis of continuous Pt island networks and their electrochemical properties for methanol electrooxidation. Chem Commun 48:6516. https://doi.org/10.1039/b813935k

    Article  CAS  Google Scholar 

  12. Huang K, Yang X, Hua W et al (2009) Experimental evidence of a microwave non-thermal effect in electrolyte aqueous solutions. New J Chem 33:1486. https://doi.org/10.1039/b821970b

    Article  CAS  Google Scholar 

  13. Alia SM, Zhang G, Kisailus D et al (2010) Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv Funct Mater 20:3742–3746. https://doi.org/10.1002/adfm.201001035

    Article  CAS  Google Scholar 

  14. He Y-B, Li G-R, Wang Z-L et al (2010) Pt nanorods aggregates with enhanced electrocatalytic activity toward methanol oxidation. J Phys Chem C 114:19175–19181. https://doi.org/10.1021/jp104991k

    Article  CAS  Google Scholar 

  15. Lee Y-W, Han S-B, Kim D-Y, Park K-W (2011) Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation. Chem Commun 47:6296. https://doi.org/10.1039/c1cc10798d

    Article  CAS  Google Scholar 

  16. Tiwari JN, Tiwari RN, Lin K (2011) Controlled synthesis and growth of perfect platinum nanocubes using a pair of low-resistivity fastened silicon wafers and their electrocatalytic properties. Nano Res 4:541–549. https://doi.org/10.1007/s12274-011-0110-4

    Article  CAS  Google Scholar 

  17. Ren X, Wilson MS, Gottesfeld S (1996) High performance direct methanol polymer electrolyte fuel cells. J Electrochem Soc 143:L12–L15. https://doi.org/10.1149/1.1836375

    Article  CAS  Google Scholar 

  18. Neto AO, Dias RR, Tusi MM et al (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166:87–91. https://doi.org/10.1016/j.jpowsour.2006.12.088

    Article  CAS  Google Scholar 

  19. Hassan HB (2009) Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells. J Fuel Chem Technol 37:346–354. https://doi.org/10.1016/S1872-5813(09)60024-4

    Article  CAS  Google Scholar 

  20. Lee S-A, Park K-W, Choi J-H et al (2002) Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J Electrochem Soc 149:A1299. https://doi.org/10.1149/1.1502685

    Article  CAS  Google Scholar 

  21. Morante-Catacora TY, Ishikawa Y, Cabrera CR (2008) Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces. J Electroanal Chem 621:103–112. https://doi.org/10.1016/j.jelechem.2008.04.029

    Article  CAS  Google Scholar 

  22. Huang J, Yang H, Huang Q et al (2004) Methanol oxidation on carbon-supported Pt-Os bimetallic nanoparticle electrocatalysts. J Electrochem Soc 151:A1810. https://doi.org/10.1149/1.1804257

    Article  CAS  Google Scholar 

  23. Kang Y, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn - Pt nanocrystals (nanocubes). J Am Chem Soc 132:7568–7569. https://doi.org/10.1021/ja100705j

    Article  CAS  PubMed  Google Scholar 

  24. Rana M, Patil PK, Chhetri M et al (2016) Pd-Pt alloys nanowires as support-less electrocatalyst with high synergistic enhancement in efficiency for methanol oxidation in acidic medium. J Colloid Interface Sci 463:99–106. https://doi.org/10.1016/j.jcis.2015.10.042

    Article  CAS  PubMed  Google Scholar 

  25. Wei Z, Guo H, Tang Z (1996) Methanol electro-oxidation on platinum and platinum-tin alloy catalysts dispersed on active carbon. J Power Sources 58:239–242. https://doi.org/10.1016/S0378-7753(96)02389-0

    Article  CAS  Google Scholar 

  26. Wang K, Gasteiger HA, Markovic NM, Ross PN (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim Acta 41:2587–2593. https://doi.org/10.1016/0013-4686(96)00079-5

    Article  CAS  Google Scholar 

  27. Ishikawa Y, Liao MS, Cabrera CR (2000) Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M = Ru, Sn): a theoretical study. Surf Sci 463:66–80. https://doi.org/10.1016/S0039-6028(00)00600-2

    Article  CAS  Google Scholar 

  28. Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt-Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH 3CH2OH in acid medium. Catal Today 160:28–38. https://doi.org/10.1016/j.cattod.2010.07.018

    Article  CAS  Google Scholar 

  29. Habibi B, Pournaghi-Azar MH, Abdolmohammad-Zadeh H, Razmi H (2009) Electrocatalytic oxidation of methanol on mono and bimetallic composite films: Pt and Pt-M (M = Ru, Ir and Sn) nano-particles in poly(o-aminophenol). Int J Hydrog Energy 34:2880–2892. https://doi.org/10.1016/j.ijhydene.2009.01.072

    Article  CAS  Google Scholar 

  30. Tritsaris GA, Rossmeisl J (2012) Methanol oxidation on model elemental and bimetallic transition metal surfaces. J Phys Chem C 116:11980–11986. https://doi.org/10.1021/jp209506d

    Article  CAS  Google Scholar 

  31. Rossmeisl J, Ferrin P, Tritsaris GA et al (2012) Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ Sci 5:8335. https://doi.org/10.1039/c2ee21455e

    Article  CAS  Google Scholar 

  32. Chiou YJ, Hsu HJ, Lin HM et al (2011) Synthesis and characterization of Cu-Pt/MWCNTs for use in electrocatalytic applications. Particuology 9:522–527. https://doi.org/10.1016/j.partic.2011.01.007

    Article  CAS  Google Scholar 

  33. Maab H, Nunes SP (2010) Modified SPEEK membranes for direct ethanol fuel cell. J Power Sources 195:4036–4042. https://doi.org/10.1016/j.jpowsour.2010.01.005

    Article  CAS  Google Scholar 

  34. Abe H, Matsumoto F, Alden LR et al (2008) Electrocatalytic performance of fuel oxidation by Pt 3 Ti nanoparticles. J Am Chem Soc 130:5452–5458

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Chen G, Xie J et al (2010) An electrocatalyst for methanol oxidation in DMFC: PtBi/XC-72 with Pt solid-solution structure. J Electrochem Soc 157:B580. https://doi.org/10.1149/1.3309725

    Article  CAS  Google Scholar 

  36. Ribeiro VA, Correa OV, Neto AO et al (2010) Preparation of PtRuNi/C electrocatalysts by an alcohol-reduction process for electro-oxidation of methanol. Appl Catal A Gen 372:162–166. https://doi.org/10.1016/j.apcata.2009.10.028

    Article  CAS  Google Scholar 

  37. Zhen-Bo W, Peng-Jian Z, Ge-Ping Y (2009) Investigations of compositions and performance of PtRuMo/C ternary catalysts for methanol electrooxidation. Fuel Cells 9:106–113. https://doi.org/10.1002/fuce.200800096

    Article  CAS  Google Scholar 

  38. Kakati N, Maiti J, Oh JY, Yoon YS (2011) Study of methanol oxidation of hydrothermally synthesized PtRuMo on multi wall carbon nanotubes. Appl Surf Sci 257:8433–8437. https://doi.org/10.1016/j.apsusc.2011.04.125

    Article  CAS  Google Scholar 

  39. Yang LX, Allen RG, Scott K et al (2004) A comparative study of ptru and ptrusn thermally formed on titanium mesh for methanol electro-oxidation. J Power Sources 137:257–263. https://doi.org/10.1016/j.jpowsour.2004.06.028

    Article  CAS  Google Scholar 

  40. Ioroi T, Yasuda K, Siroma Z et al (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225. https://doi.org/10.1149/1.1598211

    Article  CAS  Google Scholar 

  41. Liao S, Holmes K-A, Tsaprailis H, Birss VI (2006) High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. J Am Chem Soc 128:3504–3505. https://doi.org/10.1021/ja0578653

    Article  CAS  PubMed  Google Scholar 

  42. Strasser P, Fan Q,  Devenney M, Weinberg WH (2003) High Throughput Experimental and Theoretical Predictive Screening of Materials − A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts. J Phys Chem B 107:11013–11021. https://doi.org/10.1021/jp030508z

    Article  CAS  Google Scholar 

  43. Zeng J, Lee JY (2007) Ruthenium-free, carbon-supported cobalt and tungsten containing binary & ternary Pt catalysts for the anodes of direct methanol fuel cells. Int J Hydrog Energy 32:4389–4396. https://doi.org/10.1016/j.ijhydene.2007.03.012

    Article  CAS  Google Scholar 

  44. Welsch FG, Stöwe K, Maier WF (2011) Fluorescence-based high throughput screening for noble metal-free and platinum-poor anode catalysts for the direct methanol fuel cell. ACS Comb Sci 13:518–529. https://doi.org/10.1021/co2000967

    Article  CAS  PubMed  Google Scholar 

  45. Huang SY, Chang CM, Wang KW, Yeh CT (2007) Promotion of platinum-ruthenium catalyst for electrooxidation of methanol by crystalline ruthenium dioxide. ChemPhysChem 8:1774–1777. https://doi.org/10.1002/cphc.200700238

    Article  CAS  PubMed  Google Scholar 

  46. Umverslty H (1992) Study of methanol electrooxidation. Electrochim Acta 37:1320

    Google Scholar 

  47. Hirakawa K, Inoue M, Abe T (2010) Methanol oxidation on carbon-supported Pt-Ru and TiO2 (Pt-Ru/TiO2/C) electrocatalyst prepared using polygonal barrel-sputtering method. Electrochim Acta 55:5874–5880. https://doi.org/10.1016/j.electacta.2010.05.038

    Article  CAS  Google Scholar 

  48. Ganesan R, Lee JS (2006) An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum. J Power Sources 157:217–221. https://doi.org/10.1016/j.jpowsour.2005.07.069

    Article  CAS  Google Scholar 

  49. Tseung ACC, Chen KY (1997) Hydrogen spill-over effect on Pt/WO3 anode catalysts. Catal Today 38:439–443. https://doi.org/10.1016/S0920-5861(97)00053-9

    Article  CAS  Google Scholar 

  50. Huang H, Chen Q, He M et al (2013) A ternary Pt/MnO 2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation. J Power Sources 239:189–195

    Article  CAS  Google Scholar 

  51. Zhou C, Wang H, Peng F et al (2009) MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells. Langmuir 25:7711–7717. https://doi.org/10.1021/la900250w

    Article  CAS  PubMed  Google Scholar 

  52. Baglio V, Sebastián D, D’Urso C et al (2014) Composite anode electrode based on iridium oxide promoter for direct methanol fuel cells. Electrochim Acta 128:304–310. https://doi.org/10.1016/j.electacta.2013.10.141

    Article  CAS  Google Scholar 

  53. Baglio V, Amin RS, El-Khatib KM et al (2014) IrO2 as a promoter of Pt–Ru for methanol electro-oxidation. Phys Chem Chem Phys 16:10414. https://doi.org/10.1039/c4cp00466c

    Article  CAS  PubMed  Google Scholar 

  54. Katayama A (1980) Electrooxidation of methanol on a platinum-tin oxide catalyst. J Phys Chem 84:376–381. https://doi.org/10.1021/j100441a007

    Article  CAS  Google Scholar 

  55. Zhao H, Zheng Z, Li J et al (2013) Substitute of expensive Pt with improved electro- catalytic performance and higher resistance to CO poisoning for methanol oxidation: the case of synergistic Pt-Co 3 O 4 nanocomposite. Nanomicro Lett 5:296–302. https://doi.org/10.5101/nml.v5i4.p296-302

    Article  CAS  Google Scholar 

  56. Surampudi S, Narayanan SR, Vamos E et al (1994) Advances in direct oxidation methanol fuel cells. J Power Sources 47:377–385. https://doi.org/10.1016/0378-7753(94)87016-0

    Article  CAS  Google Scholar 

  57. Shukla AK, Christensen PA, Hamnett A, Hogarth MP (1995) A vapour-feed direct-methanol fuel cell with proton-exchange membrane electrolyte. J Power Sources 55:87–91. https://doi.org/10.1016/0378-7753(94)02150-2

    Article  CAS  Google Scholar 

  58. Jung DH, Lee CH, Kim CS, Shin DR (1998) Performance of a direct methanol polymer electrolyte fuel cell. J Power Sources 71:169–173. https://doi.org/10.1016/S0378-7753(97)02793-6

    Article  Google Scholar 

  59. Dohle H, Schmitz H, Bewer T et al (2002) Development of a compact 500 W class direct methanol fuel cell stack. J Power Sources 106:313–322

    Article  CAS  Google Scholar 

  60. Kim D, Lee J, Lim TH et al (2006) Operational characteristics of a 50 W DMFC stack. J Power Sources 155:203–212. https://doi.org/10.1016/j.jpowsour.2005.04.033

    Article  CAS  Google Scholar 

  61. Joh HI, Hwang SY, Cho JH et al (2008) Development and characteristics of a 400 W-class direct methanol fuel cell stack. Int J Hydrog Energy 33:7153–7162. https://doi.org/10.1016/j.ijhydene.2008.08.016

    Article  CAS  Google Scholar 

  62. Wang ZB, Rivera H, Wang XP et al (2008) Catalyst failure analysis of a direct methanol fuel cell membrane electrode assembly. J Power Sources 177:386–392. https://doi.org/10.1016/j.jpowsour.2007.11.070

    Article  CAS  Google Scholar 

  63. Prabhuram J, Krishnan NN, Choi B et al (2010) Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane. Int J Hydrog Energy 35:6924–6933. https://doi.org/10.1016/j.ijhydene.2010.04.025

    Article  CAS  Google Scholar 

  64. Patel PP, Datta MK, Jampani PH et al (2015) High performance and durable nanostructured TiN supported Pt50-Ru50 anode catalyst for direct methanol fuel cell (DMFC). J Power Sources 293:437–446. https://doi.org/10.1016/j.jpowsour.2015.05.051

    Article  CAS  Google Scholar 

  65. Feng L, Li K, Chang J et al (2015) Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 15:462–469. https://doi.org/10.1016/j.nanoen.2015.05.007

    Article  CAS  Google Scholar 

  66. Jeng KT, Chien CC, Hsu NY et al (2006) Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition. J Power Sources 160:97–104. https://doi.org/10.1016/j.jpowsour.2006.01.057

    Article  CAS  Google Scholar 

  67. Chang J, Feng L, Liu C et al (2014) Ni 2 P enhances the activity and durability of Pt anode catalyst in direct methanol fuel cells. Energy Environ Sci 7:1628–1632

    Article  CAS  Google Scholar 

  68. Verma A, Basu S (2005) Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell. J Power Sources 145:282–285. https://doi.org/10.1016/j.jpowsour.2004.11.071

    Article  CAS  Google Scholar 

  69. Verma A, Jha AK, Basu S (2005) Evaluation of an alkaline fuel cell for multifuel system. J Fuel Cell Sci Technol 2:234. https://doi.org/10.1115/1.2039955

    Article  CAS  Google Scholar 

  70. Badwal SP, Giddey S, Kulkarni A et al (2015) Direct ethanol fuel cellls for transport and stationary applications - a comprehensive review. Appl Energy 145:80–103

    Article  CAS  Google Scholar 

  71. Basu S, Agarwal A, Pramanik H (2008) Improvement in performance of a direct ethanol fuel cell: effect of sulfuric acid and Ni-mesh. Electrochem Commun 10:1254–1257. https://doi.org/10.1016/j.elecom.2008.05.042

    Article  CAS  Google Scholar 

  72. Lai SCS, Kleijn SEF, Öztürk FTZ et al (2010) Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal Today 154:92–104. https://doi.org/10.1016/j.cattod.2010.01.060

    Article  CAS  Google Scholar 

  73. Verma A, Basu S (2007) Experimental evaluation and mathematical modeling of a direct alkaline fuel cell. J Power Sources 168:200–210. https://doi.org/10.1016/j.jpowsour.2007.02.069

    Article  CAS  Google Scholar 

  74. James DD, Pickup PG (2010) Effects of crossover on product yields measured for direct ethanol fuel cells. Electrochim Acta 55:3824–3829. https://doi.org/10.1016/j.electacta.2010.02.007

    Article  CAS  Google Scholar 

  75. Kontou S, Stergiopoulos V, Song S, Tsiakaras P (2007) Ethanol/water mixture permeation through a Nafion® based membrane electrode assembly. J Power Sources 171:1–7. https://doi.org/10.1016/j.jpowsour.2006.10.009

    Article  CAS  Google Scholar 

  76. Tian Q, Chen W, Wu Y (2015) An effective PdCo/PWA-C anode catalyst for direct formic acid fuel cells. J Electrochem Soc 162:F165–F171. https://doi.org/10.1149/2.0901501jes

    Article  CAS  Google Scholar 

  77. Kowal A, Li M, Shao M et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8:325–330. https://doi.org/10.1038/nmat2359

    Article  CAS  PubMed  Google Scholar 

  78. Zignani SC, Baglio V, Linares JJ et al (2013) Endurance study of a solid polymer electrolyte direct ethanol fuel cell based on a Pt-Sn anode catalyst. Int J Hydrog Energy 38:11576–11582. https://doi.org/10.1016/j.ijhydene.2013.04.162

    Article  CAS  Google Scholar 

  79. Marković NM, Gasteiger HA, Ross PN Jr, Jiang X, Villegas I, Weaver MJ (1995) Electro-oxidation mechanism of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim Acta 40:91–98

    Article  Google Scholar 

  80. Beyhan S, Coutanceau C, Léger JM et al (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrog Energy 38:6830–6841. https://doi.org/10.1016/j.ijhydene.2013.03.058

    Article  CAS  Google Scholar 

  81. Zhou W, Zhou Z, Song S et al (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273–285. https://doi.org/10.1016/S0926-3373(03)00218-2

    Article  CAS  Google Scholar 

  82. Vigier F, Coutanceau C, Hahn F et al (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563:81–89. https://doi.org/10.1016/j.jelechem.2003.08.019

    Article  CAS  Google Scholar 

  83. Vigier F, Coutanceau C, Perrard A et al (2004) Development of anode catalysts for a direct ethanol fuel cell. J Appl Electrochem 34:439–446. https://doi.org/10.1023/B:JACH.0000016629.98535.ad

    Article  CAS  Google Scholar 

  84. Lamy C, Rousseau S, Belgsir EM et al (2004) Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim Acta 49:3901–3908. https://doi.org/10.1016/j.electacta.2004.01.078

    Article  CAS  Google Scholar 

  85. Jiang L, Zhou Z, Li W et al (2004) Effects of treatment in different atmosphere on Pt3Sn/C electrocatalysts for ethanol electro-oxidation. Energy Fuels 18:866–871. https://doi.org/10.1021/ef034073q

    Article  CAS  Google Scholar 

  86. Jiang L, Sun G, Zhou Z et al (2004) Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal Today 93–95:665–670. https://doi.org/10.1016/j.cattod.2004.06.029

    Article  CAS  Google Scholar 

  87. Zhou WJ, Song SQ, Li WZ et al (2004) Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics 175:797–803. https://doi.org/10.1016/j.ssi.2004.09.055

    Article  CAS  Google Scholar 

  88. Jiang L, Sun G, Sun S et al (2005) Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. Electrochim Acta 50:5384–5389. https://doi.org/10.1016/j.electacta.2005.03.018

    Article  CAS  Google Scholar 

  89. Colmenares L, Wang H, Jusys Z et al (2006) Ethanol oxidation on novel, carbon supported Pt alloy catalysts-model studies under defined diffusion conditions. Electrochim Acta 52:221–233. https://doi.org/10.1016/j.electacta.2006.04.063

    Article  CAS  Google Scholar 

  90. Dos Anjos DM, Kokoh KB, Léger JM et al (2006) Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J Appl Electrochem 36:1391–1397. https://doi.org/10.1007/s10800-006-9222-z

    Article  CAS  Google Scholar 

  91. Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrog Energy 37:4597–4605. https://doi.org/10.1016/j.ijhydene.2011.05.188

    Article  CAS  Google Scholar 

  92. Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt-Sn alloy catalysts. Electrochem Commun 9:398–404. https://doi.org/10.1016/j.elecom.2006.10.012

    Article  CAS  Google Scholar 

  93. Rousseau S, Coutanceau C, Lamy C, Léger JM (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24. https://doi.org/10.1016/j.jpowsour.2005.08.027

    Article  CAS  Google Scholar 

  94. Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic PteSn/C, PteIr/C, PteIreSn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrog Energy 36:14884–14897. https://doi.org/10.1016/j.ijhydene.2011.03.035

    Article  CAS  Google Scholar 

  95. Ribeiro J, dos Anjos DM, Léger JM et al (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662. https://doi.org/10.1007/s10800-008-9484-8

    Article  CAS  Google Scholar 

  96. Beyhan S, Léger J, Kadırgan F (2013) Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell. Appl Catal B 130–131:305–313. https://doi.org/10.1016/j.apcatb.2012.11.007

    Article  CAS  Google Scholar 

  97. Goel J, Basu S (2014) Effect of support materials on the performance of direct ethanol fuel cell anode catalyst. Int J Hydrog Energy 39:15956–15966. https://doi.org/10.1016/j.ijhydene.2014.01.203

    Article  CAS  Google Scholar 

  98. Liu Z, Yi X, Su X et al (2005) Preparation and characterization of Pt/C and Pt Ru/C electrocatalysts for direct ethanol fuel cells. J Power Source 149:1–7. https://doi.org/10.1016/j.jpowsour.2005.02.009

    Article  CAS  Google Scholar 

  99. Mingyuan ZHU, Gongquan SUN, Huanqiao LI et al (2008) Effect of the Sn (II)/Sn (IV) redox couple on the activity of PtSn/C for ethanol electro-oxidation. Chin J Catal 29:765–770

    Article  Google Scholar 

  100. Zhu M, Sun G, Xin Q (2009) Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim Acta 54:1511–1518. https://doi.org/10.1016/j.electacta.2008.09.035

    Article  CAS  Google Scholar 

  101. Goel J, Basu S (2012) Pt-Re-Sn as metal catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Energy Procedia 28:66–77. https://doi.org/10.1016/j.egypro.2012.08.041

    Article  CAS  Google Scholar 

  102. Wang H, Jusys Z, Behm RJ (2009) Adsorption and electrooxidation of ethylene glycol and its C2 oxidation products on a carbon-supported Pt catalyst: a quantitative DEMS study. Electrochim Acta 54:6484–6498. https://doi.org/10.1016/j.electacta.2009.05.097

    Article  CAS  Google Scholar 

  103. Pramanik H, Basu S (2010) Chemical engineering and processing: process intensification modeling and experimental validation of overpotentials of a direct ethanol fuel cell. Chem Eng Process 49:634–641. https://doi.org/10.1016/j.cep.2009.10.015

    Article  CAS  Google Scholar 

  104. Goel J, Basu S (2015) Mathematical modeling and experimental validation of direct ethanol fuel cell. Int J Hydrog Energy 40:14405–14415. https://doi.org/10.1016/j.ijhydene.2015.03.082

    Article  CAS  Google Scholar 

  105. Leung LWH, Weaver MJ (1988) Real-time FTIR spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways of small organic molecules. J Phys Chem 92:4019–4022. https://doi.org/10.1021/j100325a004

    Article  CAS  Google Scholar 

  106. De Lima RB, Paganin V, Iwasita T, Vielstich W (2003) On the electrocatalysis of ethylene glycol oxidation. Electrochim Acta 49:85–91. https://doi.org/10.1016/j.electacta.2003.05.004

    Article  CAS  Google Scholar 

  107. Selvaraj V, Vinoba M, Alagar M (2008) Electrocatalytic oxidation of ethylene glycol on Pt and Pt–Ru nanoparticles modified multi-walled carbon nanotubes. J Colloid Interface Sci 322:537–544. https://doi.org/10.1016/j.jcis.2008.02.069

    Article  CAS  PubMed  Google Scholar 

  108. Chetty R, Scott K (2007) Catalysed titanium mesh electrodes for ethylene glycol fuel cells. J Appl Electrochem 37:1077–1084. https://doi.org/10.1007/s10800-007-9358-5

    Article  CAS  Google Scholar 

  109. Neto AO, Vasconcelos TRR, Da Silva RWRV et al (2005) Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process. J Appl Electrochem 35:193–198. https://doi.org/10.1007/s10800-004-5824-5

    Article  CAS  Google Scholar 

  110. Livshits V, Peled E (2006) Progress in the development of a high-power, direct ethylene glycol fuel cell (DEGFC). J Power Sources 161:1187–1191. https://doi.org/10.1016/j.jpowsour.2006.04.141

    Article  CAS  Google Scholar 

  111. Livshits V, Philosoph M, Peled E (2008) Direct ethylene glycol fuel-cell stack—study of oxidation intermediate products. J Power Sources 178:687–691. https://doi.org/10.1016/j.jpowsour.2007.07.054

    Article  CAS  Google Scholar 

  112. Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157:78–84. https://doi.org/10.1016/j.jpowsour.2005.07.066

    Article  CAS  Google Scholar 

  113. Gojkovic SL, Popovic KD, Olszewski P et al (2005) Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J Electroanal Chem 581(581):294–302. https://doi.org/10.1016/j.jelechem.2005.05.002

    Article  CAS  Google Scholar 

  114. Muthukumar V, Chetty R (2017) Morphological transformation of electrodeposited Pt and its electrocatalytic activity towards direct formic acid fuel cells. J Appl Electrochem 47:735–745. https://doi.org/10.1007/s10800-017-1076-z

    Article  CAS  Google Scholar 

  115. Xia XH, Iwasita T (1993) Influence of underpotential deposited lead upon the oxidation of HCOOH in HCI04 at platinum electrodes. J Electrochem Soc 140:2559–2565

    Article  CAS  Google Scholar 

  116. Ralph TR, Hards GA, Keating JE, Campbell SA, Wilkinson DP, Davis M, St‐Pierre J, Johnson MC (1997) Low cost electrodes for proton exchange membrane fuel cells performance in single cells and Ballard stacks. J Electrochem Soc 144:3845–3857

    Article  CAS  Google Scholar 

  117. Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115:229–235. https://doi.org/10.1016/S0378-7753(03)00026-0

    Article  CAS  Google Scholar 

  118. Choi J, Jeong K, Dong Y et al (2006) Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J Power Sources 163:71–75. https://doi.org/10.1016/j.jpowsour.2006.02.072

    Article  CAS  Google Scholar 

  119. Uhm S, Lee HJ, Kwon Y, Lee J (2008) A stable and cost‐effective anode catalyst structure for formic acid fuel cells. Angew Chem Int Ed Engl 120(52):10317–10320. https://doi.org/10.1002/ange.200803466

    Article  Google Scholar 

  120. Fan H, Cheng M, Wang L et al (2018) Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 48:1–9. https://doi.org/10.1016/j.nanoen.2018.03.018

    Article  CAS  Google Scholar 

  121. Muthukumar V, Chetty R (2018) Electrodeposited Pt–Pd dendrite on carbon support as anode for direct formic acid fuel cells. Ionics. https://doi.org/10.1007/s11581-018-2526-2

  122. Ye W, Chen S, Ye M et al (2017) Nano energy electrocatalysts for oxygen reduction reaction and formic acid oxidation. Nano Energy 39:532–538

    Article  CAS  Google Scholar 

  123. Mohammad AM, Al-Akraa IM, El-Deab MS (2018) Superior electrocatalysis of formic acid electro-oxidation on a platinum, gold and manganese oxide nanoparticle-based ternary catalyst. Int J Hydrog Energy 43:139–149. https://doi.org/10.1016/j.ijhydene.2017.11.016

    Article  CAS  Google Scholar 

  124. Wang J, Liu Y, Okada T (2016) Novel platinum-macrocycle composite catalysts for direct formic acid fuel cells. J Appl Electrochem 46:901–905. https://doi.org/10.1007/s10800-016-0975-8

    Article  CAS  Google Scholar 

  125. Yashtulov NA, Patrikeev LN, Zenchenko VO et al (2016) Palladium–platinum–porous silicon nanocatalysts for fuel cells with direct formic acid oxidation. Nanotechnol Russ 11:562–568. https://doi.org/10.1134/S1995078016050207

    Article  CAS  Google Scholar 

  126. Zhang JM, Wang RX, Nong RJ et al (2017) Hydrogen co-reduction synthesis of PdPtNi alloy nanoparticles on carbon nanotubes as enhanced catalyst for formic acid electrooxidation. Int J Hydrog Energy 42:7226–7234. https://doi.org/10.1016/j.ijhydene.2016.05.198

    Article  CAS  Google Scholar 

  127. El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2017) Propitious dendritic Cu2O-Pt nanostructured anodes for direct formic acid fuel cells. ACS Appl Mater Interfaces 9:19766–19772. https://doi.org/10.1021/acsami.7b01565

    Article  CAS  PubMed  Google Scholar 

  128. Chang J, Feng L, Liu C et al (2014) An effective Pd–Ni 2 P/C anode catalyst for direct formic acid fuel. Angew Chem Int Ed Engl 53:122–126

    Article  CAS  PubMed  Google Scholar 

  129. Al-akraa IM, Mohammad AM, El-deab MS, El-anadouli BE (2015) Advances in direct formic acid fuel cells: fabrication of efficient Ir/Pd nanocatalysts for formic acid electro-oxidation. Int J Electrochem Sci 10:3282–3290

    CAS  Google Scholar 

  130. Feng L, Chang J, Jiang K et al (2016) Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 30:355–361. https://doi.org/10.1016/j.nanoen.2016.10.023

    Article  CAS  Google Scholar 

  131. Xu H, Yan B, Zhang K et al (2017) N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl Surf Sci 416:191–199. https://doi.org/10.1016/j.apsusc.2017.04.160

    Article  CAS  Google Scholar 

  132. Zhang LY, Liu Z (2017) Graphene decorated with Pd 4 Ir nanocrystals: ultrasound-assisted synthesis, and application as a catalyst for oxidation of formic acid. J Colloid Interface Sci 505:783–788. https://doi.org/10.1016/j.jcis.2017.06.084

    Article  CAS  PubMed  Google Scholar 

  133. Wang S, Chang J, Xue H et al (2017) Catalytic stability study of a Pd-Ni2 P/C catalyst for formic acid electrooxidation. ChemElectroChem 4:1243–1249. https://doi.org/10.1002/celc.201700051

    Article  CAS  Google Scholar 

  134. Ishiyama K, Kosaka F, Shimada I et al (2015) Deactivation resistant PdeZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells. Int J Hydrog Energy 40:16724–16733. https://doi.org/10.1016/j.jpowsour.2012.10.035

    Article  CAS  Google Scholar 

  135. Al-Akraa IM (2017) Efficient electro-oxidation of formic acid at Pd-MnOx binary nanocatalyst: optimization of deposition strategy. Int J Hydrog Energy 42:4660–4666. https://doi.org/10.1016/j.ijhydene.2016.08.090

    Article  CAS  Google Scholar 

  136. Lesiak B, Mazurkiewicz M, Malolepszy A et al (2016) Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell. Appl Surf Sci 387:929–937. https://doi.org/10.1016/j.apsusc.2016.06.152

    Article  CAS  Google Scholar 

  137. Jiang S, Yi B, Zhao Q et al (2017) Palladium–nickel catalysts based on ordered titanium dioxide nanorod arrays with high catalytic performance for formic acid electro-oxidation. RSC Adv 7:11719–11723. https://doi.org/10.1039/C7RA00194K

    Article  CAS  Google Scholar 

  138. Zuo L-X, Jiang L-P (2017) Electrocatalysis of the oxygen reduction reaction and the formic acid oxidation reaction on BN/Pd composites prepared sonochemically. J Electrochem Soc 164:H805–H811. https://doi.org/10.1149/2.1601712jes

    Article  CAS  Google Scholar 

  139. He N, Gong Y, Yang Y et al (2017) ScienceDirect an effective Pd @ Ni-B/C anode catalyst for electro- oxidation of formic acid. Int J Hydrog Energy 43:3216–3222. https://doi.org/10.1016/j.ijhydene.2017.12.167

    Article  CAS  Google Scholar 

  140. Ali H, Zaman S, Majeed I et al (2017) Porous carbon/rGO composite: an ideal support material of highly efficient palladium electrocatalysts for the formic acid oxidation reaction. ChemElectroChem 4:3126–3133. https://doi.org/10.1002/celc.201700879

    Article  CAS  Google Scholar 

  141. Li H, Zhang Y, Wan Q et al (2018) Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 131:111–120. https://doi.org/10.1016/j.carbon.2018.01.093

    Article  CAS  Google Scholar 

  142. Casado-rivera E, Volpe DJ, Alden L et al (2004) Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc 126:4043–4049. https://doi.org/10.1021/ja038497a

    Article  CAS  PubMed  Google Scholar 

  143. Lee JK, Jeon H, Uhm S, Lee J (2008) Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells. Electrochim Acta 53:6089–6092. https://doi.org/10.1016/j.electacta.2008.02.089

    Article  CAS  Google Scholar 

  144. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Source 182:124–132. https://doi.org/10.1016/j.jpowsour.2008.03.075

    Article  CAS  Google Scholar 

  145. Zainoodin AM, Tsujiguchi T, Masdar MS et al (2018) Performance of a direct formic acid fuel cell fabricated by ultrasonic spraying. Int J Hydrog Energy 43:6413–6420. https://doi.org/10.1016/j.ijhydene.2018.02.024

    Article  CAS  Google Scholar 

  146. Malolepszy A, Mazurkiewicz M, Stobinski L et al (2015) Deactivation resistant Pd-ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells. Int J Hydrog Energy 40:16724–16733. https://doi.org/10.1016/j.ijhydene.2015.08.048

    Article  CAS  Google Scholar 

  147. Bai Z, Shi M, Zhang Y et al (2016) Facile synthesis of silver@carbon nanocable-supported platinum nanoparticles as high-performing electrocatalysts for glycerol oxidation in direct glycerol fuel cells. Green Chem 18:386–391. https://doi.org/10.1039/C5GC01243K

    Article  CAS  Google Scholar 

  148. Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts. Electrochim Acta 128:279–286. https://doi.org/10.1016/j.electacta.2013.10.194

    Article  CAS  Google Scholar 

  149. Lertthahan P, Yongprapat S, Therdthianwong A, Therdthianwong S (2017) Pt-modified Au/C catalysts for direct glycerol electro-oxidation in an alkaline medium. Int J Hydrog Energy 42:9202–9209. https://doi.org/10.1016/j.ijhydene.2016.05.120

    Article  CAS  Google Scholar 

  150. Li Z-Y, Zhou J, Tang L-S et al (2018) Hydroxyl-rich ceria hydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts. J Mater Chem A 6:2318–2326. https://doi.org/10.1039/C7TA09071D

    Article  CAS  Google Scholar 

  151. de Souza NE, Gomes JF, Tremiliosi-Filho G (2017) Reactivity of 3-carbon-atom chain alcohols on gold electrode: a comparison to understand the glycerol electro-oxidation. J Electroanal Chem 800:106–113. https://doi.org/10.1016/j.jelechem.2016.08.019

    Article  CAS  Google Scholar 

  152. Gomes JF, De Paula FBC, Gasparotto LHS, Tremiliosi-Filho G (2012) The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media. Electrochim Acta 76:88–93. https://doi.org/10.1016/j.electacta.2012.04.144

    Article  CAS  Google Scholar 

  153. Ishiyama K, Kosaka F, Shimada I et al (2013) Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures. J Power Sources 225:141–149. https://doi.org/10.1016/j.jpowsour.2012.10.035

    Article  CAS  Google Scholar 

  154. Fernández PS, Tereshchuk P, Angelucci CA et al (2016) How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces? Phys Chem Chem Phys 18:25582–25591. https://doi.org/10.1039/C6CP04768H

    Article  CAS  PubMed  Google Scholar 

  155. Garcia AC, Kolb MJ, Van Nierop Y Sanchez C et al (2016) Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal 6:4491–4500. https://doi.org/10.1021/acscatal.6b00709

    Article  CAS  Google Scholar 

  156. Fernández PS, Martins CA, Martins ME, Camara GA (2013) Electrooxidation of glycerol on platinum nanoparticles: deciphering how the position of each carbon affects the oxidation pathways. Electrochim Acta 112:686–691. https://doi.org/10.1016/j.electacta.2013.09.032

    Article  CAS  Google Scholar 

  157. Fernández PS, Martins ME, Martins CA, Camara GA (2012) The electro-oxidation of isotopically labeled glycerol on platinum: new information on C-C bond cleavage and CO2production. Electrochem Commun 15:14–17. https://doi.org/10.1016/j.elecom.2011.11.013

    Article  CAS  Google Scholar 

  158. Martins CA, Fernández PS, Troiani HE et al (2014) Ethanol vs. glycerol: understanding the lack of correlation between the oxidation currents and the production of CO2on Pt nanoparticles. J Electroanal Chem 717–718:231–236. https://doi.org/10.1016/j.jelechem.2014.01.027

    Article  CAS  Google Scholar 

  159. Martins CA, Giz MJ, Camara GA (2011) Generation of carbon dioxide from glycerol: evidences of massive production on polycrystalline platinum. Electrochim Acta 56:4549–4553. https://doi.org/10.1016/j.electacta.2011.02.076

    Article  CAS  Google Scholar 

  160. Kim Y, Kim HW, Lee S et al (2017) The role of ruthenium on carbon-supported PtRu catalysts for electrocatalytic glycerol oxidation under acidic conditions. ChemCatChem 9:1683–1690. https://doi.org/10.1002/cctc.201601325

    Article  CAS  Google Scholar 

  161. Silva LSR, López-Suárez FE, Perez-Cadenas M et al (2016) Synthesis and characterization of highly active Pbx@Pty/C core-shell nanoparticles toward glycerol electrooxidation. Appl Catal B Environ 198:38–48. https://doi.org/10.1016/j.apcatb.2016.04.046

    Article  CAS  Google Scholar 

  162. Hasa B, Kalamaras E, Papaioannou EI et al (2015) Effect of TiO2 loading on Pt-Ru catalysts during alcohol electrooxidation. Electrochim Acta 179:578–587. https://doi.org/10.1016/j.electacta.2015.04.104

    Article  CAS  Google Scholar 

  163. Gomes JF, Tremiliosi-Filho G (2011) Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2:96–105. https://doi.org/10.1007/s12678-011-0039-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suddhasatwa Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, A., Narayanan, H., Basu, S. (2018). Electrocatalysis of Alternative Liquid Fuels for PEM Direct Oxidation Fuel Cells. In: Rodríguez-Varela, F., Napporn, T. (eds) Advanced Electrocatalysts for Low-Temperature Fuel Cells . Springer, Cham. https://doi.org/10.1007/978-3-319-99019-4_3

Download citation

Publish with us

Policies and ethics