Introduction: Low-Temperature Fuel Cells



This chapter describes the reactions occurring in low-temperature fuel cells, fuelled with from the most common H2, to several organic molecules. The differences in the complexity of the anode reactions and their effect on the energy that may be generated from the fuel cells are discussed. It is established that, even though H2/O2 fuel cells are the most performing in terms of power density for large-demand systems, the use of liquid fuels is advantageous for several low-power applications. The performance of nanostructured anode and cathode catalysts in complete fuel cell systems is also covered. It is indicated that in alkaline media, some non-Pt nanocatalysts have a high catalytic activity, particularly for the ORR. Even more, the recent advances in polymer electrolyte membranes are shown, from the widely used commercial Nafion®, to the more recently developed anionic polymers for anion exchange membrane fuel cells. It is concluded that compatibility of composite and blend materials with the host ionomer is critical for the development of stable low-temperature fuel cells.


Proton exchange membrane fuel cells (PEMFC) Anion exchange membrane fuel cells (AEMFC) Perfluorosulfonic-acid membranes (PFSA) Direct methanol AEMFCs (DM-AEMFCs) Direct ethanol AEMFCs (DE-AEMFCs) Direct ethylene Glycol AEMFCs (DEG-AEMFCs) Direct glycerol AEMFCs (DG-AEMFCs) Non-platinum group metal (PGM) Perfluorinated PEMs Nafion® membranes Partially fluorinated PEMs Hydrocarbon PEMs Anion exchange membranes (AEMs) Hydrogen oxidation reaction (HOR) Tafel reaction Heyrovsky reaction Volmer reaction Oxygen reduction reaction (ORR) Rotating ring disk electrode (RRDE) Koutecky–Levich plots 


  1. 1.
    Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149:S59–S67CrossRefGoogle Scholar
  2. 2.
    Stone C, Morrison AE (2002) From curiosity to -power to change the world®. Solid State Ionics 152–153:1–13CrossRefGoogle Scholar
  3. 3.
    Rodríguez-Varela FJ (2014) Fuel cells, components and systems for space technology applications. Recent Prog Space Technol 4:14–20Google Scholar
  4. 4.
    Gülzow E (2004) Alkaline fuel cells. Fuel Cells 4:251–255CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Dekel DR (2018) Review of cell performance in anion exchange membrane fuel cells. J Power Sources 375:158–169CrossRefGoogle Scholar
  7. 7.
    Hossen MM, Artyushkova K, Atanassov P, Serov A (2018) Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in alkaline exchange membrane fuel cells. J Power Sources 375:214–221CrossRefGoogle Scholar
  8. 8.
    Osmieri L, Escudero-Cid R, Monteverde Videla AHA, Ocón P, Specchia S (2018) Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell. Renew Energy 115:226–237CrossRefGoogle Scholar
  9. 9.
    Ratso S, Kruusenberg I, Käärik M, Kook M, Puust L, Saar R, Leis J, Tammeveski K (2018) Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells. J Power Sources 375:233–243CrossRefGoogle Scholar
  10. 10.
    Lenarda A, Bellini M, Marchionni A, Miller HA, Montini T, Melchionna M, Vizza F, Prato M, Fornasiero P (2018) Nanostructured carbon supported Pd-ceria as anode catalysts for anion exchange membrane fuel cells fed with polyalcohols. Inorg Chim Acta 470:213–220CrossRefGoogle Scholar
  11. 11.
    Basumatary P, Konwar D, Soo Yoon Y (2018) A novel NiCu/ZnO@MWCNT anode employed in urea fuel cell to attain superior performances. Electrochim Acta 261:78–85CrossRefGoogle Scholar
  12. 12.
    Qin H, Lin L, Chu W, Jiang W, He Y, Shi Q, Deng Y, Ji Z, Liu J, Tao S (2018) Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells. J Power Sources 374:113–120CrossRefGoogle Scholar
  13. 13.
    Miller HA, Ruggeri J, Marchionni A, Bellini M, Pagliaro MV, Bartoli C, Pucci A, Passaglia E, Vizza F (2018) Improving the energy efficiency of direct formate fuel cells with a Pd/C-CeO2 anode catalyst and anion exchange ionomer in the catalyst layer. Energies 11:369–380CrossRefGoogle Scholar
  14. 14.
    Muneeb O, Do E, Tran T, Boyd D, Huynh M, Ghosn G, Haan JL (2017) A direct ascorbate fuel cell with an anion exchange membrane. J Power Sources 351:74–78CrossRefGoogle Scholar
  15. 15.
    Wagner K, Tiwari P, Swiegers GF, Wallace GG (2018) Alkaline fuel cells with novel gortex-based electrodes are powered remarkably efficiently by methane containing 5% hydrogen. Adv Energy Mater 8:1702285CrossRefGoogle Scholar
  16. 16.
    Ziv N, Mustain WE, Dekel DR (2018) Review of ambient CO2 effect on anion exchange membranes fuel cells. ChemSusChem 11:1–16CrossRefGoogle Scholar
  17. 17.
    Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J Power Sources 195:5875–5881CrossRefGoogle Scholar
  18. 18.
    Slade RCT, Kizewski JP, Poynton SD, Zeng R, Varcoe JR (2013) Alkaline membrane fuel cells. In: Kreuer KD (ed) Selected entries from the encyclopedia of sustainability science and technology. Springer, New York, pp 9–29Google Scholar
  19. 19.
    Pan ZF, An L, Zhao TS, Tang ZK (2018) Advances and challenges in alkaline anion exchange membrane fuel cells. Prog Energy Combust Sci 66:141–175CrossRefGoogle Scholar
  20. 20.
    Sun Z, Lin B, Feng Yan F (2018) Anion-exchange membranes for alkaline fuel-cell applications: the effects of cations. ChemSusChem 11:58–70PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Omasta TJ, Wang L, Peng X, Lewis CA, Varcoe JR, Mustain WE (2018) Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J Power Sources 375:205–213CrossRefGoogle Scholar
  22. 22.
    Wang L, Brink JJ, Varcoe JR (2017) The first anion-exchange membrane fuel cell to exceed 1 W cm−2 at 70 °C with a non-Pt-group (O2) cathode. Chem Commun 53:11771–11773CrossRefGoogle Scholar
  23. 23.
    Gao X, Yu H, Jia J, Hao J, Xie F, Chi J, Qin B, Fu L, Song W, Shao X (2017) High performance anion exchange ionomer for anion exchange membrane fuel cells. RSC Adv 7:19153–19161CrossRefGoogle Scholar
  24. 24.
    Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS (2018) Anion exchange membrane fuel cells: current status and remaining challenges. J Power Sources 375:170–184CrossRefGoogle Scholar
  25. 25.
    Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5:300–306PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Miller HA, Lavacchi A, Vizza F, Marelli M, Di Benedetto F, D’Acapito F, Paska Y, Page M, Dekel DR (2016) A Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew Chem Int Ed Engl 55:6004–6007PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662–666CrossRefGoogle Scholar
  28. 28.
    Hao Yu E, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137:248–256CrossRefGoogle Scholar
  29. 29.
    Kim JH, Kim HK, Hwang KT, Lee JY (2010) Performance of air-breathing direct methanol fuel cell with anion-exchange membrane. Int J Hydrog Energy 35:768–773CrossRefGoogle Scholar
  30. 30.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31CrossRefGoogle Scholar
  31. 31.
    Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190:241–251CrossRefGoogle Scholar
  32. 32.
    An L, Zhao TS (2017) Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. J Power Sources 341:199–211CrossRefGoogle Scholar
  33. 33.
    Wang F, Qiao J, Wu H, Qi J, Li W, Mao Z, Wang Z, Sun W, Rooney D, Sun K (2017) Bioethanol as a new sustainable fuel for anion exchange membrane fuel cells with carbon nanotube supported surface dealloyed PtCo nanocomposite anodes. Chem Eng J 317:623–631CrossRefGoogle Scholar
  34. 34.
    Dutta A, Datta J (2012) Outstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cell. J Phys Chem C 116:25677–22568CrossRefGoogle Scholar
  35. 35.
    Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626CrossRefGoogle Scholar
  36. 36.
    Li YS, Zhao TS (2016) A passive anion-exchange membrane direct ethanol fuel cell stack and its applications. Int J Hydrog Energy 41:20336–20342CrossRefGoogle Scholar
  37. 37.
    Livshits V, Philosoph A, Peled E (2008) Direct ethylene glycol fuel-cell stack—study of oxidation intermediate products. J Power Sources 178:687–691CrossRefGoogle Scholar
  38. 38.
    Demirci UB (2009) How green are the chemicals used as liquid fuels in direct liquid-feed fuel cells? Environ Int 35:626–631PubMedCrossRefGoogle Scholar
  39. 39.
    An L, Zeng L, Zhao TS (2013) An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane. Int J Hydrog Energy 38:10602–10606CrossRefGoogle Scholar
  40. 40.
    Matsumoto T, Sadakiyo M, Lee Ooi M, Kitano S, Yamamoto T, Matsumura S, Kato K, Takeguchi T, Yamauchi M (2014) CO2-free power generation on an iron group nanoalloy catalyst via selective oxidation of ethylene glycol to oxalic acid in alkaline media. Sci Rep 4:5620PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cremers C, Niedergesäß A, Jung F, Müller D, Tübke J (2011) Development of an alkaline anion exchange membrane direct ethylene glycol fuel cell stack. ECS Trans 41:1987–1996CrossRefGoogle Scholar
  42. 42.
    de Souza LL, Neto AO, de O. Forbicini CALG (2017) Direct oxidation of ethylene glycol on PtSn/C for application in alkaline fuel cell. Int J Electrochem Sci 12:11855–11874CrossRefGoogle Scholar
  43. 43.
    An L, Zhao TS, Shen SY, Wu QX, Chen R (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrog Energy 35:4329–4335CrossRefGoogle Scholar
  44. 44.
    An L, Chen R (2016) Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production. J Power Sources 329:484–501CrossRefGoogle Scholar
  45. 45.
    Chen Y, Bellini M, Bevilacqua M, Fornasiero P, Lavacchi A, Miller HA, Wang L, Vizza F (2015) Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells. ChemSusChem 8:524–533PubMedCrossRefGoogle Scholar
  46. 46.
    Qi J, Benipal N, Liang C, Li W (2016) PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol). Appl Catal B Environ 199:494–503CrossRefGoogle Scholar
  47. 47.
    Ottoni CA, Ramos CED, de Souza RFB, da Silva SG, Spinacé EV, Neto AO (2018) Glycerol and ethanol oxidation in alkaline medium using PtCu/C electrocatalysts. Int J Electrochem Sci 13:1893–1904CrossRefGoogle Scholar
  48. 48.
    Ilie A, Simoes M, Baranton S, Coutanceau C, Martemianov S (2011) Influence of operational parameters and of catalytic materials on electrical performance of direct glycerol solid alkaline membrane fuel cells. J Power Sources 196:4965–4971CrossRefGoogle Scholar
  49. 49.
    Xin L, Zhang Z, Wang Z, Li W (2012) Simultaneous generation of mesoxalic acid and electricity from glycerol on a gold anode catalyst in anion-exchange membrane fuel cells. ChemCatChem 4:1105–1114CrossRefGoogle Scholar
  50. 50.
    Qi J, Xin L, Chadderdon DJ, Qiu Y, Jiang Y, Benipal N, Liang C, Li W (2014) Electrocatalytic selective oxidation of glycerol to tartronate on au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Appl Catal B Environ 154–155:360–368CrossRefGoogle Scholar
  51. 51.
    Qi J, Xin L, Zhang Z, Sun K, He H, Wang F, Chadderdon D, Qiu Y, Liang C, Li W (2013) Surface dealloyed PtCo nanoparticles supported on carbon nanotube: facile synthesis and promising application for anion exchange membrane direct crude glycerol fuel cell. Green Chem 15:1133–1137CrossRefGoogle Scholar
  52. 52.
    Zhiani M, Rostami H, Majidi S, Karami K (2013) Bis (dibenzylidene acetone) palladium (0) catalyst for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell. Int J Hydrog Energy 38:5435–5441CrossRefGoogle Scholar
  53. 53.
    Napoleão Geraldes A, da Silva DF, de Andrade e Silva LG, Spinacé EV, Neto AO, dos Santos MC (2015) Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. J Power Sources 293:823–830CrossRefGoogle Scholar
  54. 54.
    Benipal N, Qi J, Liu Q, Li W (2017) Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells. Appl Catal B Environ 210:121–130CrossRefGoogle Scholar
  55. 55.
    Zhang Z, Xin L, Li W (2012) Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC). Int J Hydrog Energy 37:9393–9401CrossRefGoogle Scholar
  56. 56.
    Wang Z, Xin L, Zhao X, Qiu Y, Zhang Z, Baturina OA, Li W (2014) Carbon supported ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells. Renew Energy 62:556–562CrossRefGoogle Scholar
  57. 57.
    Fashedemi OO, Miller HA, Marchionni A, Vizza F, Ozoemena KI (2015) Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J Mater Chem A 3:7145–7156CrossRefGoogle Scholar
  58. 58.
    Han X, Chadderdon DJ, Qi J, Xin L, Li W, Zhou W (2014) Numerical analysis of anion-exchange membrane direct glycerol fuel cells under steady state and dynamic operations. Int J Hydrog Energy 39:19767–19779CrossRefGoogle Scholar
  59. 59.
    Jamard R, Latour A, Salomon J, Capron P, Martinent-Beaumont A (2008) Study of fuel efficiency in a direct borohydride fuel cell. J Power Sources 176:287–292CrossRefGoogle Scholar
  60. 60.
    Wang L, Magliocca E, Cunningham EL, Mustain WE, Poynton SD, Escudero-Cid R, Nasef MM, Ponce-González J, Bance-Souahli R, Slade RCT, Whelligan DK, Varcoe JR (2017) An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem 19:831–843CrossRefGoogle Scholar
  61. 61.
    Wang Y, Wang G, Li G, Huang B, Pan J, Liu Q, Han J, Xiao L, Lu J, Zhuang L (2015) Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ Sci 8:177–181CrossRefGoogle Scholar
  62. 62.
    Alesker M, Page M, Shviro M, Paska Y, Gershinsky G, Dekel DR, Zitoun D (2016) Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. J Power Sources 304:332–339CrossRefGoogle Scholar
  63. 63.
    Mun Y, Kim MJ, Park SA, Lee E, Ye Y, Lee S, Kim YT, Kim S, Kim OH, Cho YH, Sung YE, Lee J (2018) Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells. Appl Catal B Environ 222:191–199CrossRefGoogle Scholar
  64. 64.
    Hu Q, Li G, Pan J, Tan L, Lu J, Zhuang L (2013) Alkaline polymer electrolyte fuel cell with Ni-based anode and co-based cathode. Int J Hydrog Energy 38:16264–16268CrossRefGoogle Scholar
  65. 65.
    Fang Y, Wang Y, Wang F, Shu C, Zhu J, Wu W (2018) Fe–Mn bimetallic oxides-catalyzed oxygen reduction reaction in alkaline direct methanol fuel cells. RSC Adv 8:8678–8687CrossRefGoogle Scholar
  66. 66.
    Yang CC (2012) Alkaline direct methanol fuel cell based on a novel anion-exchange composite polymer membrane. J Appl Electrochem 42:305–317CrossRefGoogle Scholar
  67. 67.
    Yang CC, Chiu SJ, Lin CT (2008) Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane. J Power Sources 177:40–49CrossRefGoogle Scholar
  68. 68.
    Shu C, Song B, Wei X, Liu Y, Tan Q, Chong S, Chen YZ, Yang XD, Yang WH, Liu Y (2018) Mesoporous 3D nitrogen-doped yolk-shelled carbon spheres for direct methanol fuel cells with polymer fiber membranes. Carbon 129:613–620CrossRefGoogle Scholar
  69. 69.
    Ge X, Sumboja A, Wuu D, An T, Li B, Thomas Goh FW, Andy Hor TS, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667CrossRefGoogle Scholar
  70. 70.
    Mokrini A, Raymond N, Theberge K, Robitaille L, Del Rio C, Ojeda MC, Garcia Escribano P, Acosta JL (2010) Properties of melt-extruded vs. solution-cast proton exchange membranes based on PFSA nanocomposites. ECS Trans 33:855–865CrossRefGoogle Scholar
  71. 71.
    Allen FI, Comolli LR, Kusoglu A, Modestino MA, Minor AM, Weber AZ (2015) Morphology of hydrated as-cast nafion revealed through cryo electron tomography. ACS Macro Lett 4:1–5 (, further permissions should be directed to the ACS)CrossRefGoogle Scholar
  72. 72.
    Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104 (, further permissions should be directed to the ACS)PubMedCrossRefGoogle Scholar
  73. 73.
    Li J, Pan M, Tang H (2014) Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells. RSC Adv 4:3944–3965CrossRefGoogle Scholar
  74. 74.
    Paddison SJ, Elliott JA (2006) The effects of backbone conformation on hydration and proton transfer in the short-side-chain perfluorosulfonic acid membrane. Solid State Ionics 177:2385–2390CrossRefGoogle Scholar
  75. 75.
    Elliott JA, Paddison SJ (2007) Modelling of morphology and proton transport in PFSA membranes. Phys Chem Chem Phys 9:2602–2618PubMedCrossRefGoogle Scholar
  76. 76.
    Tse YLS, Herring AM, Kim K, Voth GA (2013) Molecular dynamics simulations of proton transport in 3M and nafion perfluorosulfonic acid membranes. J Phys Chem C 117:8079–8091CrossRefGoogle Scholar
  77. 77.
    Schaberg MS, Abulu JE, Haugen G, Emery MA, O’Conner SJ, Xiong PN, Hamrock S (2010) New multi acid side-chain ionomers for proton exchange membrane fuel cells. ECS Trans 33:627–633CrossRefGoogle Scholar
  78. 78.
    Giffin GA, Haugen GM, Hamrock SJ, Di Noto V (2013) Interplay between structure and relaxations in perfluorosulfonic acid proton conducting membranes. J Am Chem Soc 135:822–834PubMedCrossRefGoogle Scholar
  79. 79.
    Gierke TD, Munn GE, Wilson FC (1981) The morphology in nafion perfluorinated membrane products, as determined by wide-angle and small-angle X-ray studies. J Polym Sci Polym Phys 19:1687–1704CrossRefGoogle Scholar
  80. 80.
    Tant MR, Darst KP, Lee KD, Martin CW (1989) Structure and properties of short-side-chain perfluorosulfonate ionomers. ACS Sym Ser 15:370–400CrossRefGoogle Scholar
  81. 81.
    Moore RB, Martin CR (1989) Morphology and chemical- properties of the dow perfluorosulfonate ionomers. Macromolecules 22:3594–3599CrossRefGoogle Scholar
  82. 82.
    Prater K (1990) The renaissance of the solid polymer fuel cell. J Power Sources 29:239–250CrossRefGoogle Scholar
  83. 83.
    Gittleman CS, Coms FD, Lai YH (2012) Membrane durability: physical and chemical degradation. In: Mench MM, Kumbur EC, Veziroglu TN (eds) Polymer electrolyte fuel cell degradation. Elsevier, Oxford, pp 15–80CrossRefGoogle Scholar
  84. 84.
    Feldheim DL, Lawson DR, Martin CR (1993) Influence of the sulfonate countercation on the thermal stability of nafion@ perfluorosulfonate membranes. J Polym Sci Polym Phys 31:953–957CrossRefGoogle Scholar
  85. 85.
    Page KA, Cable KM, Moore RB (2005) Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules 38:6472–6484CrossRefGoogle Scholar
  86. 86.
    Page KA, Landis FA, Phillips AK, Moore RB (2006) SAXS analysis of the thermal relaxation of anisotropic morphologies in oriented nafion membranes. Macromolecules 39:3939–3946CrossRefGoogle Scholar
  87. 87.
    Mokrini A (2014) Study of azoles as bifunctional additives for proton exchange membranes melt-processing from LSC and SSC perfluorosulfonic acid ionomers. ECS Trans 64:377–388CrossRefGoogle Scholar
  88. 88.
    Mokrini A, Toupin M, Malek K (2016) Techno-economics of a new high throughput process for proton exchange membranes manufacturing. World Electric Vehicle J 8:431–442CrossRefGoogle Scholar
  89. 89.
    Mokrini A (2017) Ion exchange membranes having low in-plane swelling. US Patent 9,941,538, 10 Apr 2018Google Scholar
  90. 90.
    Grubb WT (1955) Fuel cell. U.S. Patent 2,913,511, 17 Nov 1959Google Scholar
  91. 91.
    Basura VI, Chuy C, Beattie PD, Holdcroft S (2001) Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,β,β-trifluorostyrene (BAM®) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers. J Electroanal Chem 501:77–88CrossRefGoogle Scholar
  92. 92.
    Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energ Fuel 28:7303–7330CrossRefGoogle Scholar
  93. 93.
    D’Agostino VF, Lee JY, Cook EH (1974) Trifluorostyrene sulfonic acid membranes. US Patent 4,012,303, 15 Mar 1977Google Scholar
  94. 94.
    Ding J, Chuy C, Holdcroft S (2002) Enhanced conductivity in morphologically controlled proton exchange membranes: synthesis of macromonomers by SFRP and their incorporation into graft polymers. Macromolecules 35:1348–1355CrossRefGoogle Scholar
  95. 95.
    Ding J, Chuy C, Holdcroft SA (2001) A self-organized network of nanochannels enhances ion conductivity through polymer films. Chem Mater 13:2231–2233CrossRefGoogle Scholar
  96. 96.
    Enomoto K, Takahashi S, Rohani R, Maekawa Y (2012) Synthesis of copolymer grafts containing sulfoalkyl and hydrophilic groups in polymer electrolyte membranes. J Membrane Sci 36:415–416Google Scholar
  97. 97.
    Gubler L, Gürsel SA, Scherer GG (2005) Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5:317–335CrossRefGoogle Scholar
  98. 98.
    Chen J, Septiani U, Asano M, Maekawa Y, Kubota H, Yoshida M (2007) Comparative study on the preparation and properties of radiation-grafted polymer electrolyte membranes based on fluoropolymer films. J Appl Polym Sci 103:1966–1972CrossRefGoogle Scholar
  99. 99.
    Gubler L (2014) Polymer design strategies for radiation-grafted fuel cell membranes. Adv Energy Mater 4:1300827CrossRefGoogle Scholar
  100. 100.
    Guzman-Garcia AG, Pintauro PN (1992) Analysis of radiation-grafted membranes for fuel cell electrolytes. J Appl Electrochem 22:204–214CrossRefGoogle Scholar
  101. 101.
    Mokrini A, Huneault H, Gerard P (2006) Partially fluorinated proton exchange membranes based on thermoplastic elastomers compatibilized with methyl methacrylate based block copolymers. J Membrane Sci 283(1–2):74–83CrossRefGoogle Scholar
  102. 102.
    Mokrini A, Huneault M (2006) Proton exchange membranes based on compatibilized polymer blends of PVDF and SEBS. J Power Sources 154:51–58CrossRefGoogle Scholar
  103. 103.
    Babb DA (2002) Polymers from the thermal (2π+2π) cyclodimerization of fluorinated olefins. In: Hougham GG, Cassidy PE, Johns K, Davidson T (eds) Fluoropolymers. I. Synthesis. Kluwer Academic Publishers, New York, pp 25–50CrossRefGoogle Scholar
  104. 104.
    Iacono ST, Budy SM, Jin J, Smith DW Jr (2007) Science and technology of perfluorocyclobutyl aryl ether polymers. J Polym Sci Pol Chem 45:5705–5721CrossRefGoogle Scholar
  105. 105.
    Mujkic M, Iacono ST, Neilson AR, Smith DW Jr (2009) Recent optical applications of perfluorocyclobutyl aryl ether polymers. Macromol Symp 283−284:326–335CrossRefGoogle Scholar
  106. 106.
    Perpall MW, Smith DW Jr, DesMarteau DD, Creager SE (2006) Alternative trifluorovinyl ether derived fluoropolymer membranes and functionalized carbon composite electrodes for fuel cells. Polym Rev 46:297–313Google Scholar
  107. 107.
    Jiang R, Fuller T, Brawn S, Gittleman C (2013) Perfluorocyclobutane and poly(vinylidene fluoride) blend membranes for fuel cells. Electrochim Acta 110:306–315CrossRefGoogle Scholar
  108. 108.
    Gubler L, Nauser T, Coms FD, Lai YH, Gittleman CS (2018) Prospects for durable hydrocarbon-based fuel cell membranes. J Electrochem Soc 165:F3100–F3103CrossRefGoogle Scholar
  109. 109.
    Kalaw GJD, Wahome JAN, Zhu Y, Balkus KJ Jr, Musselman IH, Yang DJ, Ferraris JP (2013) Perfluorocyclobutyl (PFCB)-based polymer blends for proton exchange membrane fuel cells (PEMFCs). J Membrane Sci 431:86–95CrossRefGoogle Scholar
  110. 110.
    Marestin C, Thiry X, Rojo S, Chauveau E, Mercier R (2017) Synthesis of sulfonate ester and sulfonic acid-containing poly(arylene perfluorocyclobutane)s (PFCB) by direct copolymerization of a sulfonate ester-containing precursor. Polymer 108:179–192CrossRefGoogle Scholar
  111. 111.
    Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membranes fuel cells. Annu Rev Mater Res 33:503–555CrossRefGoogle Scholar
  112. 112.
    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104(10):4587–4612PubMedCrossRefGoogle Scholar
  113. 113.
    Page KA, Rowe BW (2012) An overview of polymer electrolyte membranes for fuel cell applications. In: Page KA, Soles CL, Runt J (eds) Polymers for energy storage and delivery. ACS Symposium Series, Washington, pp 145–164Google Scholar
  114. 114.
    Shin DW, Guiver MD, Lee YM (2017) Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem Rev 117:4759–4805PubMedCrossRefGoogle Scholar
  115. 115.
    Shimizu R, Tsuji J, Sato N, Takano J, Itami S, Kusakabe M, Miyatake K, Iiyama A, Uchida M (2017) Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation. J Power Sources 367:63–71CrossRefGoogle Scholar
  116. 116.
    Varcoe JR, Poynton SD, Slade RCT (2009) Alkaline anion-exchange membranes for low-temperature fuel cell application. In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells: fundamentals, technology and applications. Wiley, London, pp 323–335Google Scholar
  117. 117.
    Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16:257–262CrossRefGoogle Scholar
  118. 118.
    Marino MG, Kreuer KD (2018) Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem 8:513–523CrossRefGoogle Scholar
  119. 119.
    Varcoe JR, Atanassov P, Dekel DR, Herring AM (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191CrossRefGoogle Scholar
  120. 120.
    Schwesinger R, Link R, Wenzl P, Kossek S, Keller M (2006) Extremely base-resistant organic phosphazenium cations. Chem Eur J 12:429–437CrossRefGoogle Scholar
  121. 121.
    Noonan KJT, Hugar KM, Kostalik HA IV, Lobkovsky EB, Abruña HD, Coates GW (2012) Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. J Am Chem Soc 134:18161–18164PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Luo YT, Guo JC, Wang CS, Chu D (2012) Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte. Electrochem Commun 16:65–68CrossRefGoogle Scholar
  123. 123.
    Wang LQ, Brink JJ, Liu Y, Herring AM, Ponce-Gonzalez J, Whelligan DK, Varcoe JR (2017) Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy Environ Sci 10:2154–2167CrossRefGoogle Scholar
  124. 124.
    Holade Y, Sahin N, Servat K, Napporn T, Kokoh K (2015) Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells. Catalysts 5:310CrossRefGoogle Scholar
  125. 125.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  126. 126.
    Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) Methods to advance technology of proton exchange membrane fuel cells. J Electrochem Soc 135:2209–2214CrossRefGoogle Scholar
  127. 127.
    Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127:162–171CrossRefGoogle Scholar
  128. 128.
    Cavarroc M, Ennadjaoui A, Mougenot M, Brault P, Escalier R, Tessier Y, Durand J, Roualdes S, Sauvage T, Coutanceau C (2009) Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochem Commun 11:859–861CrossRefGoogle Scholar
  129. 129.
    Croissant MJ, Napporn T, Léger JM, Lamy C (1998) Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes. Electrochim Acta 43:2447–2457CrossRefGoogle Scholar
  130. 130.
    Wang JX, Springer TE, Adzic RR (2006) Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes. J Electrochem Soc 153:A1732–A1740CrossRefGoogle Scholar
  131. 131.
    Lamy C, Léger J-M, Srinivasan S (2001) Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  132. 132.
    Velázquez-Palenzuela A, Centellas F, Garrido JA, Arias C, Rodríguez RM, Brillas E, Cabot P-L (2011) Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells. J Power Sources 196:3503–3512CrossRefGoogle Scholar
  133. 133.
    Abida B, Chirchi L, Baranton S, Napporn TW, Morais C, Léger J-M, Ghorbel A (2013) Hydrogenotitanates nanotubes supported platinum anode for direct methanol fuel cell. J Power Sources 241:429–439CrossRefGoogle Scholar
  134. 134.
    Brummel O, Waidhas F, Faisal F, Fiala R, Vorokhta M, Khalakhan I, Dubau M, Figueroba A, Kovacs G, Aleksandrov HA, Vayssilov GN, Kozlov SM, Neyman KM, Matolin V, Libuda J (2016) Stabilization of small platinum nanoparticles on Pt-CeO2 thin film electrocatalysts during methanol oxidation. J Phys Chem C 120:19723–19736CrossRefGoogle Scholar
  135. 135.
    Cao J, Chen H, Zhang X, Zhang Y, Liu X (2018) Graphene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation. RSC Adv 8:8228–8232CrossRefGoogle Scholar
  136. 136.
    El Sawy EN, Birss VI (2018) Nanoengineered Ir-core@Pt-sheII nanoparticles with controlled Pt shell coverages for direct methanol electro-oxidation. ACS Appl Mater Interfaces 10:3459–3469PubMedCrossRefGoogle Scholar
  137. 137.
    Jasim AM, Hoff SE, Xing Y (2018) Enhancing methanol electrooxidation activity using double oxide catalyst support of tin oxide clusters on doped titanium dioxides. Electrochim Acta 261:221–226CrossRefGoogle Scholar
  138. 138.
    Kazemi R, Kiani A (2012) Deposition of palladium submonolayer on nanoporous gold film and investigation of its performance for the methanol electrooxidation reaction. Int J Hydrog Energy 37:4098–4106CrossRefGoogle Scholar
  139. 139.
    Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010) Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48:1124–1130CrossRefGoogle Scholar
  140. 140.
    Ostroverkh A, Johanek V, Kus P, Sediva R, Matolin V (2016) Efficient ceria-platinum inverse catalyst for partial oxidation of methanol. Langmuir 32:6297–6309PubMedCrossRefGoogle Scholar
  141. 141.
    Rednyk A, Johanek V, Khalakhan I, Dubau M, Vorokhta M, Matolin V (2016) Methanol oxidation on sputter-coated platinum oxide catalysts. Int J Hydrog Energy 41:265–275CrossRefGoogle Scholar
  142. 142.
    Xie J, Zhang Q, Gu L, Xu S, Wang P, Liu J, Ding Y, Yao YF, Nan C, Zhao M, You Y, Zou Z (2016) Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 21:247–257CrossRefGoogle Scholar
  143. 143.
    Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273CrossRefGoogle Scholar
  144. 144.
    Brueckner TM, Pickup PG (2017) Kinetics and stoichiometry of methanol and ethanol oxidation in multi-anode proton exchange membrane cells. J Electrochem Soc 164:F1172–F1178CrossRefGoogle Scholar
  145. 145.
    Yuan W, Cheng Y, Shen PK, Li CM, Jiang SP (2015) Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. J Mater Chem A 3:1961–1971CrossRefGoogle Scholar
  146. 146.
    Napporn WT, Laborde H, Léger JM, Lamy C (1996) Electro-oxidation of C1 molecules at Pt-based catalysts highly dispersed into a polymer matrix: effect of the method of preparation. J Electroanal Chem 404:153–159CrossRefGoogle Scholar
  147. 147.
    Beyhan S, Uosaki K, Feliu JM, Herrero E (2013) Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline. J Electroanal Chem 707:89–94CrossRefGoogle Scholar
  148. 148.
    Delpeuch AB, Maillard F, Chatenet M, Soudant P, Cremers C (2016) Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and in situ FTIR study. Appl Catal B Environ 181:672–680CrossRefGoogle Scholar
  149. 149.
    Pech-Rodriguez WJ, Gonzalez-Quijano D, Vargas-Gutierrez G, Morais C, Napporn TW, Rodriguez-Varela FJ (2017) Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl Catal B Environ 203:654–662CrossRefGoogle Scholar
  150. 150.
    Almeida TS, Palma LM, Morais C, Kokoh KB, De Andrade AR (2013) Effect of adding a third metal to carbon-supported ptsn-based nanocatalysts for direct ethanol fuel cell in acidic medium. J Electrochem Soc 160:F965–F971CrossRefGoogle Scholar
  151. 151.
    Beyhan S, Coutanceau C, Léger J-M, Napporn TW, Kadırgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrog Energy 38:6830–6841CrossRefGoogle Scholar
  152. 152.
    Buso-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Behm RJ, Feliu JM (2016) Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: a combined in situ IR spectroscopy and online mass spectrometry study. J Electroanal Chem 763:116–124CrossRefGoogle Scholar
  153. 153.
    Erini N, Krause P, Gliech M, Yang R, Huang Y, Strasser P (2015) Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. J Power Sources 294:299–304CrossRefGoogle Scholar
  154. 154.
    García-Rodríguez S, Somodi F, Borbáth I, Margitfalvi JL, Peña MA, Fierro JLG, Rojas S (2009) Controlled synthesis of Pt-Sn/C fuel cell catalysts with exclusive Sn–Pt interaction: application in CO and ethanol electrooxidation reactions. Appl Catal B Environ 91:83–91CrossRefGoogle Scholar
  155. 155.
    Higuchi E, Takase T, Chiku M, Inoue H (2014) Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction. J Power Sources 263:280–287CrossRefGoogle Scholar
  156. 156.
    Ishitobi H, Ino Y, Nakagawa N (2017) Anode catalyst with enhanced ethanol electrooxidation activity by effective interaction between Pt-Sn-SiO2 for a direct ethanol fuel cell. Int J Hydrog Energy 42:26897–26904CrossRefGoogle Scholar
  157. 157.
    Mahesh I, Jaithaliya R, Sarkar A (2017) Efficient electrooxidation of ethanol on bi@Pt/C nanoparticles: (i) effect of monolayer bi deposition on specific sites of Pt nanoparticle (ii) calculation of average number of e(−)s without help of chemical analysis. Electrochim Acta 258:933–941CrossRefGoogle Scholar
  158. 158.
    Majlan EH, Rohendi D, Daud WRW, Husaini T, Haque MA (2018) Electrode for proton exchange membrane fuel cells: a review. Renew Sust Energ Rev 89:117–134CrossRefGoogle Scholar
  159. 159.
    Pierozynski B (2012) On the ethanol electrooxidation reaction on catalytic surfaces of Pt in 0.1 M NaOH. Int J Electrochem Sci 7:4261–4271Google Scholar
  160. 160.
    Pierozynski B (2012) Electrooxidation of ethanol on PtRh and PtRu surfaces studied in 0.5 M H2SO4: relation to the behaviour at polycrystalline Pt. Int J Electrochem Sci 7:4488–4497Google Scholar
  161. 161.
    Pierozynski B (2012) Kinetic aspects of ethanol electrooxidation on catalytic surfaces of Pt in 0.5 M H2SO4. Int J Electrochem Sci 7:3327–3338Google Scholar
  162. 162.
    Purgato FLS, Pronier S, Olivi P, de Andrade AR, Leger JM, Tremiliosi-Filho G, Kokoh KB (2012) Direct ethanol fuel cell: electrochemical performance at 90 degrees C on Pt and PtSn/C electrocatalysts. J Power Sources 198:95–99CrossRefGoogle Scholar
  163. 163.
    Rizo R, Sebastián D, Lázaro MJ, Pastor E (2017) On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl Catal B Environ 200:246–254CrossRefGoogle Scholar
  164. 164.
    Silva JCM, Parreira LS, De Souza RFB, Calegaro ML, Spinacé EV, Neto AO, Santos MC (2011) PtSn/C alloyed and non-alloyed materials: differences in the ethanol electro-oxidation reaction pathways. Appl Catal B Environ 110:141–147CrossRefGoogle Scholar
  165. 165.
    Silva LC, Maia G, Passos RR, de Souza EA, Camara GA, Giz MJ (2013) Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochim Acta 112:612–619CrossRefGoogle Scholar
  166. 166.
    Soares LA, Morais C, Napporn TW, Kokoh KB, Olivi P (2016) Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J Power Sources 315:47–55CrossRefGoogle Scholar
  167. 167.
    Xia XH, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437:233–240CrossRefGoogle Scholar
  168. 168.
    Yang YY, Ren J, Li QX, Zhou ZY, Sun SG, Cai WB (2014) Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal 4:798–803CrossRefGoogle Scholar
  169. 169.
    Zhang Z, Xin L, Sun K, Li W (2011) Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrog Energy 36:12686–12697CrossRefGoogle Scholar
  170. 170.
    Camara GA, de Lima RB, Iwasita T (2005) The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy. J Electroanal Chem 585:128–131CrossRefGoogle Scholar
  171. 171.
    dos Anjos DM, Hahn F, Leger JM, Kokoh KB, Tremiliosi-Filho G (2008) Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys. J Braz Chem Soc 19:795–802CrossRefGoogle Scholar
  172. 172.
    Garcia-Rodriguez S, Rojas S, Pena MA, Fierro JLG, Baranton S, Leger JM (2011) An FTIR study of Rh-PtSn/C catalysts for ethanol electrooxidation: effect of surface composition. Appl Catal B Environ 106:520–528CrossRefGoogle Scholar
  173. 173.
    Kowal A, Gojkovic SL, Lee KS, Olszewski P, Sung YE (2009) Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt-Rh, Pt-SnO2 and Pt-Rh-SnO2 nanoclusters. Electrochem Commun 11:724–727CrossRefGoogle Scholar
  174. 174.
    Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger JM (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908CrossRefGoogle Scholar
  175. 175.
    Purgato FLS, Olivi P, Leger JM, de Andrade AR, Tremiliosi-Filho G, Gonzalez ER, Lamy C, Kokoh KB (2009) Activity of platinum-tin catalysts prepared by the Pechini-Adams method for the electrooxidation of ethanol. J Electroanal Chem 628:81–89CrossRefGoogle Scholar
  176. 176.
    Purgato FLS, Pronier S, Olivi P, de Andrade AR, Léger JM, Tremiliosi-Filho G, Kokoh KB (2012) Direct ethanol fuel cell: electrochemical performance at 90°C on Pt and PtSn/C electrocatalysts. J Power Sources 198:95–99CrossRefGoogle Scholar
  177. 177.
    Ribadeneira E, Hoyos BA (2008) Evaluation of Pt–Ru–Ni and Pt–Sn–Ni catalysts as anodes in direct ethanol fuel cells. J Power Sources 180:238–242CrossRefGoogle Scholar
  178. 178.
    Ribeiro J, dos Anjos DM, Leger JM, Hahn F, Olivi P, de Andrade AR, Tremiliosi-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662CrossRefGoogle Scholar
  179. 179.
    Sen Gupta S, Datta J (2006) A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits. J Electroanal Chem 594:65–72CrossRefGoogle Scholar
  180. 180.
    Simoes FC, dos Anjos DM, Vigier F, Leger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KB (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167:1–10CrossRefGoogle Scholar
  181. 181.
    Sun S, Halseid MC, Heinen M, Jusys Z, Behm RJ (2009) Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190:2–13CrossRefGoogle Scholar
  182. 182.
    Wang Z-B, Yin G-P, Zhang J, Sun Y-C, Shi P-F (2006) Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell. J Power Sources 160:37–43CrossRefGoogle Scholar
  183. 183.
    Xu C, Shen P k, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531CrossRefGoogle Scholar
  184. 184.
    Damjanovic A, Genshaw MA, Bockris JO, apos M (1966) Distinction between intermediates produced in main and side electrodic reactions. J Chem Phys 45:4057–4059CrossRefGoogle Scholar
  185. 185.
    Wroblowa HS, Yen Chi P, Razumney G (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem Interfacial Electrochem 69:195–201CrossRefGoogle Scholar
  186. 186.
    Hsueh KL, Chin DT, Srinivasan S (1983) Electrode kinetics of oxygen reduction: a theoretical and experimental analysis of the rotating ring-disc electrode method. J Electroanal Chem Interfacial Electrochem 153:79–95CrossRefGoogle Scholar
  187. 187.
    Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358CrossRefGoogle Scholar
  188. 188.
    Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochim Acta 46:579–588CrossRefGoogle Scholar
  189. 189.
    Lim D-H, Wilcox J (2012) Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J Phys Chem C 116:3653–3660CrossRefGoogle Scholar
  190. 190.
    Sahin NE, Napporn TW, Dubau L, Kadirgan F, Leger JM, Kokoh KB (2017) Temperature-dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from microwave-heated diethylene glycol method. Appl Catal B Environ 203:72–84CrossRefGoogle Scholar
  191. 191.
    Huang Y, Wagner FT, Zhang JL, Jorne J (2014) Hydrogen adsorption on C-supported Pt and Pt-co shell-core nano-catalysts in proton exchange membrane fuel cells: entropic effects and catalytic activity. J Electrochem Soc 161:F653–F659CrossRefGoogle Scholar
  192. 192.
    Asset T, Chattot R, Fontana M, Mercier-Guyon B, Job N, Dubau L, Maillard F (2018) A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles. ChemPhysChem 19(13):1552–1567PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Fiala R, Figueroba A, Bruix A, Vaclavu M, Rednyk A, Khalakhan I, Vorokhta M, Lavkova J, Illas F, Potin V, Matolinova I, Neyman KM, Matolin V (2016) High efficiency of Pt2+ − CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells. Appl Catal B Environ 197:262–270CrossRefGoogle Scholar
  194. 194.
    David S, Alexey S, Kateryna A, Jonathan G, Plamen A, Aricò AS, Vincenzo B (2016) High performance and cost-effective direct methanol fuel cells: Fe-N-C methanol-tolerant oxygen reduction reaction catalysts. ChemSusChem 9:1986–1995CrossRefGoogle Scholar
  195. 195.
    Ma K-B, Kwak D-H, Han S-B, Park H-S, Kim D-H, Won J-E, Kwon S-H, Kim M-C, Moon S-H, Park K-W (2018) Direct ethanol fuel cells with superior ethanol-tolerant nonprecious metal cathode catalysts for oxygen reduction reaction. ACS Sustain Chem Eng 6:7609–7618CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Poitiers, IC2MP UMR-CNRS 7285Poitiers Cedex 9France
  2. 2.NRC Automotive and Surface Transportation Research CenterBouchervilleCanada
  3. 3.Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Unidad SaltilloRamos ArizpeMexico

Personalised recommendations