Skip to main content

Deep Belief Network for Molecular Feature Selection in Ligand-Based Virtual Screening

  • Conference paper
  • First Online:
Book cover Recent Trends in Data Science and Soft Computing (IRICT 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 843))

Abstract

It became obvious that it is required to reduce the high-dimensional of data in many data mining researches and applications. Virtual Screening (VS) is a set of computational methods that aim to score, rank and/or filter a set of chemical structures using one or more computational procedures to ensure those molecules with the largest prior probabilities of activity. 2D fingerprint descriptors are used to represent molecule features, most of these features are important and has ability to improve the molecules similarity and the others are not important and taking more computational time without any effect on the similarity score. Deep belief networks is one of the deep learning methods used to select the important features to reduce the high dimensionality by using stack of Restricted Boltzmann Machine and fine tune to enhance weights and reduce the reconstruct feature error. Thus, the features that have more reconstruct error are removed and only features with less constrict error will be used. The experimental results showed the enhancements on VS results using the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lionta, E., et al.: Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 14(16), 1923–1938 (2014)

    Article  Google Scholar 

  2. Rollinger, J.M., Stuppner, H., Langer, T.: Virtual screening for the discovery of bioactive natural products. Natural Compounds as Drugs, vol. 1, pp. 211–249. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Vogt, M., Wassermann, A.M., Bajorath, J.: Application of information—theoretic concepts in chemoinformatics. Information 1(2), 60–73 (2010)

    Article  Google Scholar 

  4. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, London (2007)

    MATH  Google Scholar 

  5. Xue, B., et al.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

    Article  Google Scholar 

  6. Unler, A., Murat, A., Chinnam, R.B.: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181(20), 4625–4641 (2011)

    Article  Google Scholar 

  7. Pradipta Lie, F.A., Go, T.H.: Reconfiguration control with collision avoidance framework for unmanned aerial vehicles in three-dimensional space. J. Aerosp. Eng. 26(3), 637–645 (2011)

    Article  Google Scholar 

  8. Liu, N., et al.: Sparse representation based image super-resolution on the KNN based dictionaries. Laser Technol. Opt. (2018). https://doi.org/10.1016/j.optlastec.2018.01.043

    Article  Google Scholar 

  9. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  10. Klinger, S., Austin, J.: Weighted superstructures for chemical similarity searching. In: Proceedings of the 9th Joint Conference on Information Sciences (2006)

    Google Scholar 

  11. Arif, S.M., Holliday, J.D., Willett, P.: The Use of Weighted 2D Fingerprints in Similarity-Based Virtual Screening. Elsevier, Amsterdam (2016)

    Google Scholar 

  12. Abdo, A., Salim, N.: New fragment weighting scheme for the bayesian inference network in ligand-based virtual screening. J. Chem. Inf. Model. 51(1), 25–32 (2010)

    Article  Google Scholar 

  13. Ahmed, A., Abdo, A., Salim, N.: Ligand-based Virtual screening using Bayesian inference network and reweighted fragments. Sci. World J. (2012). https://doi.org/10.1100/2012/410914

    Article  Google Scholar 

  14. Unity. Tripos Inc

    Google Scholar 

  15. Matter, H., Pötter, T.: Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J. Chem. Inf. Comput. Sci. 39(6), 1211–1225 (1999)

    Article  Google Scholar 

  16. James, C., Weininger, D., Delany, J.: Daylight Theory Manual. Daylight Chemical Information Systems, Inc., Irvine (1995)

    Google Scholar 

  17. Ahmed, A., Salim, N., Abdo, A.: Fragment reweighting in ligand-based virtual screening. Adv. Sci. Lett. 19(9), 2782–2786 (2013)

    Article  Google Scholar 

  18. Xue, L., et al.: Mini-fingerprints detect similar activity of receptor ligands previously recognized only by three-dimensional pharmacophore-based methods. J. Chem. Inf. Comput. Sci. 41(2), 394–401 (2001)

    Article  Google Scholar 

  19. Xue, L., et al.: Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys. J. Chem. Inf. Comput. Sci. 43(4), 1218–1225 (2003)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  21. Mohamed, A.-R., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012)

    Article  Google Scholar 

  22. Kim, Y., Lee, H., Provost, E.M.: Deep learning for robust feature generation in audiovisual emotion recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2013)

    Google Scholar 

  23. Peng, Z., et al.: Deep boosting: joint feature selection and analysis dictionary learning in hierarchy. Neurocomputing 178, 36–45 (2016)

    Article  Google Scholar 

  24. Semwal, V.B., Mondal, K., Nandi, G.C.: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach. Neural Comput. Appl. 28(3), 565–574 (2017)

    Article  Google Scholar 

  25. Suk, H.-I., et al.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(5), 2569–2587 (2016)

    Article  Google Scholar 

  26. Zou, Q., et al.: Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12(11), 2321–2325 (2015)

    Article  Google Scholar 

  27. Ibrahim, R., et al.: Multi-level gene/MiRNA feature selection using deep belief nets and active learning. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE (2014)

    Google Scholar 

  28. Baoyi Wang, S.S., Zhang, S.: Research on feature selection method of intrusion detection based on deep belief network. In: Proceedings of the 2015 3rd International Conference on Machinery, Materials and Information Technology Applications (2015)

    Google Scholar 

  29. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  30. Beltrán, N.H., et al.: Feature selection algorithms using Chilean wine chromatograms as examples. J. Food Eng. 67(4), 483–490 (2005)

    Article  MathSciNet  Google Scholar 

  31. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  32. Freund, Y., Haussler, D.: Unsupervised learning of distributions on binary vectors using two layer networks. In: Advances in Neural Information Processing Systems (1992)

    Google Scholar 

  33. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Training 14(8), 1771–1800 (2006)

    MATH  Google Scholar 

  34. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. Parallel Distributed Processing, Explorations in the Microstructure of Cognition, vol. 1, p. 18. MIT Press, Cambridge (1986)

    Google Scholar 

  35. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  36. Darroch, J.N., Lauritzen, S.L., Speed, T.P.: Markov fields and log-linear interaction models for contingency tables. Ann. Stat. 8, 522–539 (1980)

    Article  MathSciNet  Google Scholar 

  37. Lauritzen, S.L.: Graphical Models, vol. 17. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  38. Pipeline Pilot Software: SciTegic Accelrys Inc. http://www.accelrys.com/. San Diego Accelrys Inc. (2008)

  39. Yuan, C., Sun, X., Lv, R.: Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun. 13(7), 60–65 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Higher Education (MOHE) and the Research Management Centre (RMC) at the Universiti Teknologi Malaysia (UTM) under the Research University Grant Category (VOT Q.J130000.2528.16H74 and R.J130000.7828.4F985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maged Nasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasser, M., Salim, N., Hamza, H., Saeed, F. (2019). Deep Belief Network for Molecular Feature Selection in Ligand-Based Virtual Screening. In: Saeed, F., Gazem, N., Mohammed, F., Busalim, A. (eds) Recent Trends in Data Science and Soft Computing. IRICT 2018. Advances in Intelligent Systems and Computing, vol 843. Springer, Cham. https://doi.org/10.1007/978-3-319-99007-1_1

Download citation

Publish with us

Policies and ethics