Skip to main content

Exploration of Characterization and Classification Techniques for Movement Identification from EMG Signals: Preliminary Results

  • Conference paper
  • First Online:
Advances in Computing (CCC 2018)

Abstract

Today, human-computer interfaces are increasingly more often used and become necessary for human daily activities. Among some remarkable applications, we find: Wireless-computer controlling through hand movement, wheelchair directing/guiding with finger motions, and rehabilitation. Such applications are possible from the analysis of electromyographic (EMG) signals. Despite some research works have addressed this issue, the movement classification through EMG signals is still an open challenging issue to the scientific community -especially, because the controller performance depends not only on classifier but other aspects, namely: used features, movements to be classified, the considered feature-selection methods, and collected data. In this work, we propose an exploratory work on the characterization and classification techniques to identifying movements through EMG signals. We compare the performance of three classifiers (KNN, Parzen-density-based classifier and ANN) using spectral (Wavelets) and time-domain-based (statistical and morphological descriptors) features. Also, a methodology for movement selection is proposed. Results are comparable with those reported in literature, reaching classification errors of 5.18% (KNN), 14.7407% (ANN) and 5.17% (Parzen-density-based classifier).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: A review of control methods for electric power wheelchairs based on electromyography signals with special emphasis on pattern recognition. IETE Techn. Rev. 28(4), 316–326 (2011)

    Article  Google Scholar 

  2. Aguiar, L.F., Bó, A.P.: Hand gestures recognition using electromyography for bilateral upper limb rehabilitation. In: 2017 IEEE Life Sciences Conference (LSC), pp. 63–66. IEEE (2017)

    Google Scholar 

  3. Halaki, M., Ginn, K.: Normalization of EMG signals: to normalize or not to normalize and what to normalize to? (2012)

    Google Scholar 

  4. Atzori, M., et al.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1, 140053 (2014)

    Article  Google Scholar 

  5. Podrug, E., Subasi, A.: Surface EMG pattern recognition by using DWT feature extraction and SVM classifier. In: The 1st Conference of Medical and Biological Engineering in Bosnia and Herzegovina (CMBEBIH 2015), 13–15 March 2015 (2015)

    Google Scholar 

  6. Vicario Vazquez, S.A., Oubram, O., Ali, B.: Intelligent recognition system of myoelectric signals of human hand movement. In: Brito-Loeza, C., Espinosa-Romero, A. (eds.) ISICS 2018. CCIS, vol. 820, pp. 97–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76261-6_8

    Chapter  Google Scholar 

  7. Atzori, M., et al.: Characterization of a benchmark database for myoelectric movement classification. IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 73–83 (2015)

    Article  Google Scholar 

  8. Krishna, V.A., Thomas, P.: Classification of emg signals using spectral features extracted from dominant motor unit action potential. Int. J. Eng. Adv. Technol. 4(5), 196–200 (2015)

    Google Scholar 

  9. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  10. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine Learning Proceedings 1992, pp. 249–256. Elsevier (1992)

    Google Scholar 

  11. Romo, H., Realpe, J., Jojoa, P., Cauca, U.: Surface EMG signals analysis and its applications in hand prosthesis control. Rev. Av. en Sistemas e Informática 4(1), 127–136 (2007)

    Google Scholar 

  12. Shin, S., Tafreshi, R., Langari, R.: A performance comparison of hand motion EMG classification. In: 2014 Middle East Conference on Biomedical Engineering (MECBME), pp. 353–356. IEEE (2014)

    Google Scholar 

  13. Kim, K.S., Choi, H.H., Moon, C.S., Mun, C.W.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011)

    Article  Google Scholar 

  14. Arozi, M., Putri, F.T., Ariyanto, M., Caesarendra, W., Widyotriatmo, A., Setiawan, J.D., et al.: Electromyography (EMG) signal recognition using combined discrete wavelet transform based on artificial neural network (ANN). In: International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE), pp. 95–99. IEEE (2016)

    Google Scholar 

  15. Pan, Z.W., Xiang, D.H., Xiao, Q.W., Zhou, D.X.: Parzen windows for multi-class classification. J. Complex. 24(5), 606–618 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kurzynski, M., Wolczowski, A.: Hetero- and homogeneous multiclassifier systems based on competence measure applied to the recognition of hand grasping movements. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine. AISC, vol. 4, pp. 163–174. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06596-0_15

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the “Smart Data Analysis Systems - SDAS” group (http://sdas-group.com), as well as the “Grupo de Investigación en Ingeniería Eléctrica y Electrónica - GIIEE” from Universidad de Nariño. Also, the authors acknowledge to the research project supported by Agreement No. 095 November 20th, 2014 by VIPRI from Universidad de Nariño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lasso-Arciniegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viveros-Melo, A. et al. (2018). Exploration of Characterization and Classification Techniques for Movement Identification from EMG Signals: Preliminary Results. In: Serrano C., J., Martínez-Santos, J. (eds) Advances in Computing. CCC 2018. Communications in Computer and Information Science, vol 885. Springer, Cham. https://doi.org/10.1007/978-3-319-98998-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98998-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98997-6

  • Online ISBN: 978-3-319-98998-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics