Skip to main content

Abstract

Simulation-based educational methods are recognized as an established component of medical training for medical students, residents, and fellows; have been shown to be low-cost and cost-effective; and most recently have been linked to convincingly improved training outcomes for high-risk, low-frequency obstetrical emergencies. This chapter offers an overview of educational theory supporting simulation-based education (SBE) methods.

The core components of experiential learning theory, concrete experience, reflective observation, abstract conceptualization, and active experimentation drive simulation-based learning through the learning styles of diverging, assimilating, converging, and accommodating as learners’ kinesthetic and cognitive skills grow in the simulation space. Judicious application of fidelity in its many dimensions provides a basis for faculty to scaffold the growth of their learners.

Simulation provides a substrate for deliberate practice, a component of mastery learning, leading to expert performance as healthcare professionals engage in lifelong learning. In this chapter, we provide an overview of these topics and their interrelationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Categorized as a Level 2 simulation in Alinier’s 35. Alinier [35]. Typology.

References

  1. Deering S, Auguste T, Lockrow E. Obstetric simulation for medical student, resident, and fellow education. YSPER. 2013;37(3):143–5.

    Google Scholar 

  2. Bruno CJ, Glass KM. Cost-effective and low-technology options for simulation and training in neonatology. YSPER. 2016;40(7):473–9.

    Google Scholar 

  3. Fisher N, Bernstein PS, Satin A, Pardanani S, Heo H, Merkatz IR, et al. Resident training for eclampsia and magnesium toxicity management: simulation or traditional lecture? Am J Obstet Gynecol. 2017;203(4):1–5.

    Google Scholar 

  4. Kolb DA. Experiential learning. Englewood Cliffs: Prentice-Hall; 1984.

    Google Scholar 

  5. Kolb AY, Kolb DA. Learning styles and learning spaces: enhancing experiential learning in higher education. Acad Manag Learn Edu. 2005;4(2):193–212.

    Article  Google Scholar 

  6. Kolb DA. Experiential learning: experience as the source of learning and development. 2nd ed. Pearson Education: Saddle River; 2015.

    Google Scholar 

  7. Kolb DA. Management and the learning process. Calif Manag Rev. 1976;XVIII(3):21–31.

    Article  Google Scholar 

  8. Dreyfus SE, Dreyfus HL. A five-stage model of the mental activities involved in directed skill acquisition. DTIC Document: Berkeley; 1980.

    Book  Google Scholar 

  9. Dreyfus SE. The five-stage model of adult skill acquisition. Bull Sci Technol Soc. 2004;24(3):177–81.

    Article  Google Scholar 

  10. Ericsson KA. The influence of experience and deliberate practice on the development of superior expert performance. In: Ericsson KA, Charness N, Feltovich PJ, Hoffman RR, editors. The Cambridge handbook of expertise and expert performance. Cambridge: Cambridge University Press; 2006. p. 683–704.

    Chapter  Google Scholar 

  11. Kolb DA. On management and the learning process. Cambridge, MA: Massachusetts Institute of Technology; 1973.

    Google Scholar 

  12. Piaget J. Development and learning. In: Gauvain M, Cole M, editors. Readings on the development of children, vol. 1997. New York: Scientific American Books; 1964. p. 19–28.

    Google Scholar 

  13. Marrow AJ. The practical theorist: the life and work of Kurt Lewin, vol. 1969. New York: Basic Books; 1969.

    Google Scholar 

  14. Lewin K. Resolving social confllicts & field theory in social science. Washington, DC: American Psychological Association; 2008 [1946].

    Google Scholar 

  15. Hampden-Turner CM. An existential “learning theory” and the integration of T-group research. J Appl Behav Sci. 1966;2(4):367–86.

    Article  Google Scholar 

  16. Bradford L, Gibb J, Benne K, editors. T-group theory and laboratory method: innovation in re-education. New York: Wiley; 1964.

    Google Scholar 

  17. Dewey J. Education and experience. New York: Simon and Schuster; 1938.

    Google Scholar 

  18. Kolb AY, Kolb DA. Learning styles and learning spaces: a review of the multidisciplinary application of experiential learning theory in higher education. In: Sims RR, Sims SJ, editors. Learning styles and learning. New York: Nova Science Publishers, Inc.; 2006. p. 45–91.

    Google Scholar 

  19. Arafeh JMR. Simulation-based training: the future of competency? J Perinat Neonatal Nurs. 2011;25(2):171–4.

    Article  PubMed  Google Scholar 

  20. Toofanny RD, Simms AM, Beck DA, Daggett V. Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection. BMC bioinformatics. 2011;12:234.

    Article  CAS  Google Scholar 

  21. Cook T. The curves of life. London: Constable and Company; 1914.

    Google Scholar 

  22. Mann K, Gordon J, MacLeod A. Reflection and reflective practice in health professions education: a systematic review. Adv Health Sci Educ. 2009;14(4):595.

    Article  Google Scholar 

  23. Hays RT. Simulator fidelity: a concept paper. DTIC Document; 1980.

    Google Scholar 

  24. Hays RT. Research issues in the determination of simulator fidelity: proceedings of the ARI sponsored workshop 23–24 July, 1981.

    Google Scholar 

  25. Rehmann AJ, Mitman RD, Reynolds MC. Federal aviation administration technical C. A handbook of flight simulation fidelity requirements for human factors research; 1995. 25 p.

    Google Scholar 

  26. Alessi SM. Fidelity in the design of instructional simulations. J Comput-Based Ins. 1988;15:40–7.

    Google Scholar 

  27. Alessi SM. Simulation design for training and assessment. Aircrew Train Assess. 2000;

    Google Scholar 

  28. Hays RT, Singer MJ. Simulation fidelity in training system design: bridging the gap between reality and training. New York: Springer; 1989.

    Book  Google Scholar 

  29. Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62.

    Article  PubMed  Google Scholar 

  30. Maran NJ, Glavin RJ. Low-to high-fidelity simulation–a continuum of medical education? Med Educ. 2003;37(s1):22–8.

    Article  PubMed  Google Scholar 

  31. Alinier G. A typology of educationally focused medical simulation tools. Med Teach. 2007;29(8):e243–50.

    Article  PubMed  Google Scholar 

  32. Liu D, Macchiarella N, Vincenzi D. Simulation fidelity. Boca Raton: CRC Press; 2008. p. 61–73.

    Google Scholar 

  33. Tun JK, Alinier G, Tang J. Redefining simulation fidelity for healthcare education. Simul Gaming. 2015;46(2):159–74.

    Article  Google Scholar 

  34. Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46(7):636–47.

    Article  PubMed  Google Scholar 

  35. Lee KHK, Grantham H, Boyd R. Comparison of high- and low-fidelity mannequins for clinical performance assessment. Emerg Med Australas. 2008;20(6):508–14.

    PubMed  Google Scholar 

  36. Bredmose PP, Habig K, Davies G, Grier G, Lockey DJ. Scenario based outdoor simulation in pre-hospital trauma care using a simple mannequin model. Scandinavian. Journal of Trauma, Resuscitation and Emergency Medicine. 2010;18(1):13.

    Article  Google Scholar 

  37. Lapkin S, Levett-Jones T. A cost-utility analysis of medium vs. high-fidelity human patient simulation manikins in nursing education. J Clin Nurs. 2011;20(23–24):3543–52.

    Article  PubMed  Google Scholar 

  38. Levett-Jones T, Lapkin S, Hoffman K, Arthur C, Roche J. Examining the impact of high and medium fidelity simulation experiences on nursing students’ knowledge acquisition. Nurse Educ Pract. 2011;11(6):380–3.

    Article  PubMed  Google Scholar 

  39. Paige JB, Morin KH. Simulation Fidelity and cueing: a systematic review of the literature. Clin Simul Nurs. 2013;9(11):e481–e9.

    Article  Google Scholar 

  40. Hamstra SJ, Brydges R, Hatala R, Zendejas B, Cook D. Reconsidering fidelity in simulation-based training. Acad Med. 2014;89(3):387–92.

    Article  PubMed  Google Scholar 

  41. van Merrienboer JJG, Sweller J. Cognitive load theory and complex learning: recent developments and future directions. Educ Psychol Rev. 2005;17(2):147–77.

    Article  Google Scholar 

  42. Reedy GB. Using cognitive load theory to inform simulation design and practice. Clin Simul Nurs. 2015;11(8):355–60.

    Article  Google Scholar 

  43. Burchard ER, Lockrow EG, Zahn CM, Dunlow SG, Satin AJ. Simulation training improves resident performance in operative hysteroscopic resection techniques. Am J Obstet Gynecol. 2007;197(5):542–e4.

    Article  PubMed  Google Scholar 

  44. Holton D, Clarke D. Scaffolding and metacognition. Int J Math Educ Sci Technol. 2006;37(2):127–43.

    Article  Google Scholar 

  45. Bruner JS. Organization of early skilled action. Child Dev. 1973;44(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  46. Vygotsky L. Mind in society: the development of higher psychological processes. Oxford: Harvard University Press; 1978.

    Google Scholar 

  47. Wood D, Bruner JS, Ross G. The role of tutoring in problem solving. J Child Psychol Psychiatry. 1976;17(2):89–100.

    Article  CAS  PubMed  Google Scholar 

  48. Barrows HS, Feltovich PJ. The clinical reasoning process. Med Educ. 1987;21(2):86–91.

    Article  CAS  PubMed  Google Scholar 

  49. Land SM, Hannafin MJ. Patterns of understanding with open-ended learning environments: a qualitative study. Educ Technol Res Dev. 1997;45(2):47–73.

    Article  Google Scholar 

  50. Saye JW, Brush T. Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educ Technol Res Dev. 2002;50(3):77–96.

    Article  Google Scholar 

  51. Yelland N, Masters J. Rethinking scaffolding in the information age. Comput Educ. 2007;48(3):362–82.

    Article  Google Scholar 

  52. Simons KD, Klein JD. The impact of scaffolding and student achievement levels in a problem-based learning environment. Instr Sci. 2007;35(1):41–72.

    Article  Google Scholar 

  53. Sibley J, Parmelee DX. Knowledge is no longer enough: enhancing professional education with team-based learning. New Dir Teach Learn. 2008;2008(116):41–53.

    Article  Google Scholar 

  54. Parmelee DX, Hudes P. Team-based learning: a relevant strategy in health professionals’ education. Med Teach. 2012;34(5):411–3.

    Article  PubMed  Google Scholar 

  55. Tolsgaard MG, Kulasegaram KM, Ringsted CV. Collaborative learning of clinical skills in health professions education: the why, how, when and for whom. Med Educ. 2015;50(1):69–78.

    Article  Google Scholar 

  56. Borders LD, Eubanks S, Callanan N. Supervision of psychosocial skills in genetic counseling. J Genet Couns. 2006;15(4):211–23.

    Article  PubMed  Google Scholar 

  57. Hess A. Growth in supervision: stages of supervisee and supervisor development. In: Kaslow F, editor. Supervision and training: models, dilemnsa, and challenges. New York: The Hawoth, Inc.; 1986. p. 51–67.

    Google Scholar 

  58. Middelton LA, Peters KF, Helmbold EA. Programmed instruction: genetics and gene therapy: genes and inheritance. Cancer Nurs. 1997;20(2):129–51.

    Article  CAS  PubMed  Google Scholar 

  59. Read A, Donnai D. New clinical genetics. 3rd ed. Oxfordshire: Scion; 2015.

    Google Scholar 

  60. Venne VL, Coleman D. Training the Millennial learner through experiential evolutionary scaffolding: implications for clinical supervision in graduate education programs. J Genet Couns. 2010;19(6):554–69.

    Article  PubMed  Google Scholar 

  61. Van Lier L. Interaction in the language curriculum: awareness, autonomy, and authenticity. London: Longman; 1996.

    Google Scholar 

  62. Jonassen DH. Scaffolding diagnostic reasoning in case-based-learning environments. J Comput High Educ. 1996;8(1):48–68.

    Article  Google Scholar 

  63. Hmelo C, Day R. Contextualized questioning to scaffold learning from simulations. Comput Educ. 1999;32(2):151–64.

    Article  Google Scholar 

  64. Barrows HS. How to design a problem-based curriculum for the preclinical years. New York: Springer Pub Co; 1985.

    Google Scholar 

  65. Choules AP. The use of elearning in medical education: a review of the current situation. Postgrad Med J. 2007;83(978):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu B, Wang M, Johnson JM, Grotzer TA. Improving the learning of clinical reasoning through computer-based cognitive representation. Med Educ Online. 2014;19:25940.

    Article  PubMed  Google Scholar 

  67. Lemheney AJ, Bond WF, Padon JC. Developing virtual reality simulations for office-based medical emergencies. J Virtual Worlds Res. 2016;9:1–18.

    Google Scholar 

  68. Kizakevich P, Furberg R, Hubal R, editors. Virtual reality simulation for multicasualty triage training. Proceedings of the 2006 I/ …; 2006/01/01.

    Google Scholar 

  69. Rawson RE, Dispensa ME, Goldstein RE, Nicholson KW, Vidal NK. A simulation for teaching the basic and clinical science of fluid therapy. Adv Physiol Educ. 2009;33(3):202–8.

    Article  PubMed  Google Scholar 

  70. Nel PW. The use of an advanced simulation training facility to enhance clinical psychology trainees’ learning experiences. Psychol Learn Teach. 2010;9(2):65.

    Article  Google Scholar 

  71. Banerjee A, Slagle JM, Mercaldo ND, Booker R, Miller A, France DJ, et al. A simulation-based curriculum to introduce key teamwork principles to entering medical students. BMC Med Educ. 2016;16(1):295.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Papanagnou D. Telesimulation: a paradigm shift for simulation education. AEM Educ Train. 2017;1:137.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406.

    Article  Google Scholar 

  74. Ericsson KA. Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med. 2008;15(11):988–94.

    Article  PubMed  Google Scholar 

  75. Ericsson KA. The scientific study of expert levels of performance: general implications for optimal learning and creativity1. High Abil Stud. 1998;9(1):75–100.

    Article  Google Scholar 

  76. Fitts PM, Posner MI. Human performance. 1967.

    Google Scholar 

  77. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79(10 Suppl):S70–81.

    Article  PubMed  Google Scholar 

  78. McGaghie WC. Mastery learning. Acad Med. 2015;90(11):1438–41.

    Article  PubMed  Google Scholar 

  79. McGaghie WC, Miller G, Sajid A, Tedler T. Competency-based curriculum development in medical education. An introduction. Public health papers no. 68. Geneva: World Health Organization; 1978. 96 p.

    Google Scholar 

  80. Wayne DB, Butter J, Siddall VJ, Fudala MJ, Wade LD, Feinglass J, et al. Mastery learning of advanced cardiac life support skills by internal medicine residents using simulation technology and deliberate practice. J Gen Intern Med. 2006;21(3):251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wayne DB, Barsuk JH, O’Leary KJ, Fudala MJ, McGaghie WC. Mastery learning of thoracentesis skills by internal medicine residents using simulation technology and deliberate practice. J Hosp Med. 2008;3(1):48–54.

    Article  PubMed  Google Scholar 

  82. Barsuk JH, Ahya SN, Cohen ER, McGaghie WC, Wayne DB. Mastery learning of temporary hemodialysis catheter insertion by nephrology fellows using simulation technology and deliberate practice. Am J Kidney Dis. 2009;54(1):70–6.

    Article  PubMed  Google Scholar 

  83. Barsuk JH, Cohen ER, Caprio T, McGaghie WC, Simuni T, Wayne DB. Simulation-based education with mastery learning improves residents’ lumbar puncture skills. Neurology. 2012;79(2):132–7.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Barsuk JH, Cohen ER, Vozenilek JA, O’Connor LM, McGaghie WC, Wayne DB. Simulation-based education with mastery learning improves paracentesis skills. J Grad Med Educ. 2012;4(1):23–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Barsuk JH, Cohen ER, Mikolajczak A, Seburn S, Slade M, Wayne DB. Simulation-based mastery learning improves central line maintenance skills of ICU nurses. J Nurs Adm. 2015;45(10):511–7.

    Article  PubMed  Google Scholar 

  86. Kessler DO, Auerbach M, Pusic M, Tunik MG, Foltin JC. A randomized trial of simulation-based deliberate practice for infant lumbar puncture skills. Simul Healthc. 2011;6(4):197–203.

    Article  PubMed  Google Scholar 

  87. Sawyer T, Sierocka-Castaneda A, Chan D, Berg B, Lustik M, Thompson M. Deliberate practice using simulation improves neonatal resuscitation performance. Simul Healthc. 2011;6(6):327–36.

    Article  PubMed  Google Scholar 

  88. Barry JS, Gibbs MD, Rosenberg AA. A delivery room-focused education and deliberate practice can improve pediatric resident resuscitation training. J Perinatol. 2012;32(12):920–6.

    Article  CAS  PubMed  Google Scholar 

  89. Cordero L, Hart BJ, Hardin R, Mahan JD, Nankervis CA. Deliberate practice improves pediatric residents’ skills and team behaviors during simulated neonatal resuscitation. Clin Pediatr. 2013;52(8):747–52.

    Article  Google Scholar 

  90. Marcus H, Vakharia V, Kirkman MA, Murphy M, Nandi D. Practice makes perfect? The role of simulation-based deliberate practice and script-based mental rehearsal in the acquisition and maintenance of operative neurosurgical skills. Neurosurgery. 2013;72(Suppl 1):124–30.

    Article  PubMed  Google Scholar 

  91. Palter VN, Grantcharov TP. Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room: a randomized controlled trial. Ann Surg. 2014;259(3):443–8.

    Article  PubMed  Google Scholar 

  92. Ahn J, Yashar MD, Novack J, Davidson J, Lapin B, Ocampo J, et al. Mastery learning of video laryngoscopy using the Glidescope in the Emergency Department. Simul Healthc. 2016;11(5):309–15.

    Article  PubMed  Google Scholar 

  93. Chudnoff SG, Liu CS, Levie MD, Bernstein P, Banks EH. Efficacy of a novel educational curriculum using a simulation laboratory on resident performance of hysteroscopic sterilization. Fertil Steril. 2010;94(4):1521–4.

    Article  PubMed  Google Scholar 

  94. Rackow BW, Solnik MJ, Tu FF, Senapati S, Pozolo KE, Du H. Deliberate practice improves obstetrics and gynecology residents’ hysteroscopy skills. J Grad Med Educ. 2012;4(3):329–34.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Barsuk JH, Cohen ER, Potts S, Demo H, Gupta S, Feinglass J, et al. Dissemination of a simulation-based mastery learning intervention reduces central line-associated bloodstream infections. Qual Saf Health Care. 2014;23(9):749–56.

    Google Scholar 

  96. Griswold S, Ponnuru S, Nishisaki A, Szyld D, Davenport M, Deutsch ES, et al. The emerging role of simulation education to achieve patient safety: translating deliberate practice and debriefing to save lives. Pediatr Clin N Am. 2012;59(6):1329–40.

    Article  Google Scholar 

  97. McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Medical education featuring mastery learning with deliberate practice can lead to better health for individuals and populations. Acad Med. 2011;86(11):e8–9.

    Article  PubMed  Google Scholar 

  98. McGaghie WC, Issenberg SB, Barsuk JH, Wayne DB. A critical review of simulation-based mastery learning with translational outcomes. Med Educ. 2014;48(4):375–85.

    Article  PubMed  Google Scholar 

  99. Seropian MA. General concepts in full scale simulation: getting started. Anesth Analg. 2003;97(6):1695–705.

    Article  PubMed  Google Scholar 

  100. Allen J. Maintenance training simulator fidelity and individual difference in transfer of training. Hum Factors. 1986;28(5):497–509.

    Article  Google Scholar 

  101. Rinalducci E. Characteristics of visual fidelity in the virtual environment. Presence Teleop Virt. 1996;5(3):330–45.

    Article  Google Scholar 

  102. Gross D, Freemann R, editors. Measuring fidelity differentials in HLA simulations. Fall 1997 Simulation Interoperability Workshop; 1997.

    Google Scholar 

  103. Kaiser M, Schroeder J. Flights of fancy: the art and sceince of flight simulation. In: Vidulich M, Tsang P, editors. Principles and practices of aviation psychology. Mahwah: Lawrence Erlbaum Associates; 2003. p. 435–71.

    Google Scholar 

  104. Dahl Y, Alsos OA, Svanæs D. Fidelity considerations for simulation-based usability assessments of mobile ICT for hospitals. Int J Hum Comput Interact. 2010;26(5):445–76.

    Article  Google Scholar 

  105. Zhang B. How to consider simulation fidelity and validity for an engineering simulator. Flight simulation and technologies. Guidance, navigation, and control and co-located conferences. American Institute of Aeronautics and Astronautics; 1993.

    Google Scholar 

  106. Roza M, Voogd J, Jense H, editors. Defining, specifying and developing fidelity referents. 2001 European simulation interooperability workshop. London; 2001.

    Google Scholar 

  107. Hughes T, Rolek E, editors. Fidelity and validity: issues of human behavioral representation requirements development. 2003 Winter simulation conference. New Orleans; 2003.

    Google Scholar 

  108. Beaubien JM, Baker DP. The use of simulation for training teamwork skills in health care: how low can you go? Qual Saf Health Care. 2004;13(suppl 1):i51–i6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dieckmann P, Gaba D, Rall M. Deepening the theoretical foundations of patient simulation as social practice. Simul Healthc. 2007;2(3):183–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les R. Becker Ph.D., MS.MEdL, NRP, CHSE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becker, L.R., Hermosura, B.A. (2019). Simulation Education Theory. In: Deering, S., Auguste, T., Goffman, D. (eds) Comprehensive Healthcare Simulation: Obstetrics and Gynecology. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98995-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98995-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98994-5

  • Online ISBN: 978-3-319-98995-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics