Skip to main content

Use of Photon Scattering Interactions in Diagnosis and Treatment of Disease

  • Chapter
  • First Online:
  • 419 Accesses

Abstract

This chapter looks at photon scattering applications in medicine. In the energy range of interest there are two types of scattering events, incoherent (Compton) and coherent (Rayleigh) scattering, and this chapter looks at how these events can be usefully used in the diagnosis and treatment of disease. In the first part we present an overview of Compton cameras for gamma imaging in the context of proton beam therapy, where they can be used for proton range verification. Proton beam therapy is currently in need of range verification for quality assurance and to improve treatment efficacy and safety. We will first briefly introduce potential methods for in vivo proton range verification, of which prompt gamma imaging is a promising example. We describe the process of gamma emission during proton irradiation, as well as the challenges of its detection and interpretation. The use of Compton camera for prompt gamma imaging has advantages over other gamma detectors since it does not require mechanical collimators and has a typical field of view of 180°. The Compton camera’s principle of operation and design criteria for prompt gamma imaging are described, as well as image reconstruction techniques such as back-projection and stochastic origin ensemble.

The second part of the chapter presents tissue diffraction, based upon coherent scattering as a diagnostic tool. X-ray diffraction (XRD) is a technique which can be used to calculate the atomic or molecular structure of a material by measuring X-ray scattering profiles. While XRD has been a longstanding tool in analytical and materials science, this section reviews the relatively new application of XRD to the differentiation of healthy and cancerous tissue and how the results compare to conventional histopathology. As well as outlining the typical signatures expected of different tissue types, the hardware and data processing requirements will be discussed, particularly in the context of the trade-offs that would need to be considered in the design and development of a clinically deployable system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.P. Dendy, B. Heaton, Physics for Diagnostic Radiology, Medical Science Series (IoP Publishing, UK, 1999), p. 122

    Book  Google Scholar 

  2. R.D. Speller, J.A. Horrocks, Photon scattering – a ‘new’ source of information in medicine and biology? Phys. Med. Biol. 36, 1 (1991)

    Article  CAS  Google Scholar 

  3. T. Koligliatis, J. Kalef-Ezra, R.D. Speller, M.J. Mooney, J. Litsas, Compton scatter densitometry in bone: influence of the anatomical site. Phys. Med. 14, 73 (1998)

    Google Scholar 

  4. M.A. Kumakhov, A.F. Gamaliy, V.N. Vasiliev, M.Y. Zaytsev, K.V. Zaytseva, A.A. Markelov, Y.V. Ozerov, Scattered X-rays in medical diagnostics. SPIE 5943, 210 (2005)

    Google Scholar 

  5. M. Antoniassi, A.L.C. Conceicao, M.E. Poletti, Characterization of breast tissues using Compton scattering. Nucl. Instrum. Methods Phys. Res., Sect. A 619, 375 (2010)

    Article  CAS  Google Scholar 

  6. M. Antoniassi, A.L.C. Conceicao, M.E. Ploetti, Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio. Nucl. Instrum. Methods Phys. Res., Sect. A 652, 739 (2011)

    Article  CAS  Google Scholar 

  7. M. Georgiadis, M. Guizar-Sicairos, A. Zwahlen, A. Trussel, O. Bunk, R. Muller, P. Schneider, 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 71, 42 (2015)

    Article  CAS  Google Scholar 

  8. N. Tamura, P.U. Gilbert, X-ray microdiffraction of biominerals. Methods Enzymol. 532, 501 (2013)

    Article  CAS  Google Scholar 

  9. C. Dawson, J.A. Horrocks, R. Kwong, R.D. Speller, H.N. Whitfield, Low-angle X-ray scattering signatures of urinary calculi. World J. Urol. 14, S43 (1996)

    Article  Google Scholar 

  10. S. Sidhu, G. Falzon, S.A. Hart, J.G. Fox, R.A. Lewis, K.K.W. Siu, Classification of breast tissue using a laboratory system for small-angle x-ray scattering (SAXS). Phys. Med. Biol. 56, 6779 (2011)

    Article  CAS  Google Scholar 

  11. B. Ghammraoui, L. Popescu, Non-invasive classification of breast microcalcifications using X-ray coherent scatter computed tomography. Phys. Med. Biol. 62, 1192 (2017)

    Article  Google Scholar 

  12. C. Sosa, A. Malezan, M.E. Poletti, R.D. Perez, Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues. Radiat. Phys. Chem. 137, 125 (2017)

    Article  CAS  Google Scholar 

  13. W. Elsharkawy, W. Elshemey, Quantitative characterization of fatty liver disease using X-ray scattering. Radiat. Phys Chem. 92, 14 (2013)

    Article  CAS  Google Scholar 

  14. H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 57, R99–R117 (2012)

    Article  CAS  Google Scholar 

  15. A.-C. Knopf, A. Lomax, In vivo proton range verification: a review. Phys. Med. Biol. 58, R131–R160 (2013)

    Article  Google Scholar 

  16. H.-M. Lu, A potential method for in vivo range verification in proton therapy treatment. Phys. Med. Biol. 53, 1413–1424 (2008)

    Article  Google Scholar 

  17. H.-M. Lu etal., Investigation of an implantable dosimeter for single-point water equivalent path length verification in proton therapy. Med. Phys. 37, 5858–5866 (2010)

    Article  Google Scholar 

  18. B. Gottschalk etal., Water equivalent path length measurement in proton radiotherapy using time resolved diode dosimetry. Med. Phys. 38, 2282–2288 (2011)

    Article  CAS  Google Scholar 

  19. E.H. Bentefour etal., Effect of tissue heterogeneity on an in vivo range verification technique for proton therapy. Phys. Med. Biol. 57, 5473–5484 (2012)

    Article  Google Scholar 

  20. L. Sulak etal., Experimental studies of the acoustic signature of proton beams traversing fluid media. Nucl. Instrum. Methods 161, 203–217 (1979)

    Article  CAS  Google Scholar 

  21. Y. Hayakawa etal., Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiat. Oncol. Investig. 3, 42–25 (1995)

    Article  Google Scholar 

  22. W. Assmann etal., Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Med. Phys. 42(2), 567–574 (2015)

    Article  CAS  Google Scholar 

  23. M. Ahmad etal., Theoretical detection threshold of the proton-acoustic range verification technique. Med. Phys. 42(10), 5735–5744 (2015)

    Article  Google Scholar 

  24. S. Kellnberger etal., Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging. Sci. Rep. 6, 29305 (2016). https://doi.org/10.1038/srep29305

    Article  PubMed  PubMed Central  Google Scholar 

  25. K. Parodi etal., Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 68, 920–934 (2007)

    Article  Google Scholar 

  26. M.T. Studenski, Y. Xiao, Proton therapy dosimetry using positron emission tomography. World J. Radiol. 2, 135–142 (2010)

    Article  Google Scholar 

  27. S. Agostinelli etal., Geant4 – a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003)

    Article  CAS  Google Scholar 

  28. J.M. Verburg etal., Simulation of prompt gamma-ray emission during proton radiotherapy. Phys. Med. Biol. 57, 5459–5472 (2012)

    Article  CAS  Google Scholar 

  29. F. Stichelbaut, Y. Jongen, in Verification of Prompt Beam Position in the Patient by the Detection of Prompt Gamma-Rays Emission. 39th Meeting In the Particle Therapy Cooperative Group, San Francisco (2003)

    Google Scholar 

  30. C.H. Min etal., Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 89, 183517 (2006)

    Article  Google Scholar 

  31. D. Kim etal., Pinhole camera measurements of prompt gamma-rays for detection of beam range variation in proton therapy. J. Korean Phys. Soc. 55, 1673–1676 (2009)

    Article  CAS  Google Scholar 

  32. V. Bom etal., Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit. Phys. Med. Biol. 57, 297–308 (2012)

    Article  Google Scholar 

  33. J. Smeets etal., Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Phys. Med. Biol. 57, 3371–3405 (2012)

    Article  CAS  Google Scholar 

  34. C.H. Min etal., Development of array-type prompt gamma measurements system for in vivo range verification in proton therapy. Med. Phys. 39, 2100–2107 (2012)

    Article  CAS  Google Scholar 

  35. J. Krimmer etal., Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations. J. Instrum. 10, P01011 (2015)

    Article  Google Scholar 

  36. J. Smeets etal., Experimental comparison of knife-edge and multi-parallel collimators for prompt gamma imaging of proton pencil beams. Front. Oncol. 6, 156 (2016)

    Article  Google Scholar 

  37. M. Frandes etal., A tracking Compton-scattering imaging system for hadron therapy monitoring. IEEE Trans. Nucl. Sci. 57, 144–150 (2010)

    Article  CAS  Google Scholar 

  38. F. Roellinghoff etal., Design of a Compton camera for 3D prompt gamma imaging during ion beam therapy. Nucl. Instrum. Methods Phys. Res., Sect. A 648, S20–S23 (2011)

    Article  CAS  Google Scholar 

  39. C. Golnik etal., Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field – a benchmark setup for prompt gamma-ray imaging devices. J. Instrum. 11, P06009 (2016)

    Article  Google Scholar 

  40. S.W. Peterson etal., Optimizing a 3-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys. Med. Biol. 55, 6841–6856 (2010)

    Article  CAS  Google Scholar 

  41. D. Robertson etal., Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy. Phys. Med. Biol. 56, 3047–3059 (2011)

    Article  Google Scholar 

  42. J.C. Polf etal., Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Phys. Med. Biol. 60, 7085–7099 (2015)

    Article  CAS  Google Scholar 

  43. P. Cambraia Lopes etal., Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters. Med. Phys. Biol. 60, 6063–6085 (2015)

    Article  Google Scholar 

  44. C. Richter etal., First clinical application of a prompt gamma based in vivo proton range verification system. Radiother. Oncol. 118, 232–237 (2016)

    Article  Google Scholar 

  45. R.W. Todd, J.M. Nightingale, D.B. Everett, Nature 251, 132–134 (1974)

    Article  CAS  Google Scholar 

  46. M. Singh, D. Doria, An electronically collimated gamma camera for single photon emission computed tomography. Part II: Image reconstruction and preliminary measurements. Med. Phys. 10, 427–435 (1983)

    Google Scholar 

  47. O. Klein, Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52(11–12), 853–868 (1929)

    Article  Google Scholar 

  48. S.J. Wilderman etal., Fast algorithm for list mode back-projection of Compton scatter camera data. IEEE Trans. Nucl. Sci. 45, 957–962 (1998)

    Article  Google Scholar 

  49. S.E. King, A solid-state Compton camera for three-dimensional imaging. Nucl. Instrum. Methods Phys. Res., Sect. A 353, 320–323 (1994)

    Article  CAS  Google Scholar 

  50. B. Smith, Reconstruction methods and completeness conditions for two Compton data models. J. Opt. Soc. Am. A 22, 445–459 (2005)

    Article  Google Scholar 

  51. T. Hebert etal., Three-dimensional maximum likelihood reconstruction for an electronically collimated single-photon-emission imaging system. J. Opt. Soc. Am. A 7, 1305–1313 (1990)

    Article  CAS  Google Scholar 

  52. S.J. Wilderman etal., Improved modeling of system response in list mode EM reconstruction of Compton scatter camera images. IEEE Trans. Nucl. Sci. 48, 111–116 (2001)

    Article  Google Scholar 

  53. L. Han etal., Statistical performance evaluation and comparison of a Compton medical imaging system and a collimated Anger camera for higher energy photon imaging. Phys. Med. Biol. 53, 7029–7045 (2008)

    Article  Google Scholar 

  54. S.M. Kim etal., Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. Phys. Med. Biol. 55, 5007–5027 (2010)

    Article  Google Scholar 

  55. V.-G. Nguyen etal., GPU-accelerated 3D Bayesian image reconstruction from Compton scattered data. Phys. Med. Biol. 56, 2817–2836 (2011)

    Article  Google Scholar 

  56. J. Cui etal., in Fast and Accurate 3D Compton Cone Projections on GPU Using CUDA. Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) (2011), pp. 2572–2575

    Google Scholar 

  57. V.-G. Nguyen, S.-J. Lee, GPU-accelerated iterative reconstruction from Compton scattered data using a matched pair of conic projector and backprojector. Comput. Methods Prog. Biomed. 131, 27–36 (2016)

    Article  Google Scholar 

  58. A. Andreyev etal., Fast image reconstruction for Compton camera using stochastic origin ensemble approach. Med. Phys. 38, 429–438 (2011)

    Article  Google Scholar 

  59. A. Sitek, Representation of photon limited data emission tomography using origin ensemble. Phys. Med. Biol. 53, 3201–3216 (2008)

    Article  CAS  Google Scholar 

  60. A. Andreyev etal., in Stochastic Image Reconstruction Method for Compton Camera. Proc. IEEE Nucl. Sci. Symp. Conf. Record (NSS/MIC) (2009), pp. 2985–2988

    Google Scholar 

  61. A. Andreyev etal., Resolution recovery for Compton camera using origin ensemble algorithm. Med. Phys. 43, 4866–4876 (2016)

    Article  CAS  Google Scholar 

  62. D. Mackin etal., Evaluation of stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys. Med. Biol. 57, 3537–3553 (2012)

    Article  Google Scholar 

  63. F.X. Avila-Soto etal., in Parallelization for Fast Image Reconstruction Using the Stochastic Origin Ensemble Method for Proton Beam Therapy. REU Site: Interdisciplinary Program in High Performance Computing (2015)

    Google Scholar 

  64. http://www.who.int/cancer/detection/breastcancer/en/index1.html

  65. P.P. Provenzano etal., Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008)

    Article  Google Scholar 

  66. L. Cherkezyan etal., Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study. BMC Cancer 14, 189 (2014)

    Article  Google Scholar 

  67. L. Jones etal., HEXITEC ASIC—a pixellated readout chip for CZT detectors. Nucl. Instrum. Methods Phys. Res., Sect. A 604, p34–p37 (2009)

    Article  Google Scholar 

  68. D. O’Flynn etal., Explosive detection using pixellated X-ray diffraction (PixD). J. Instrum. 8, P03007 (2013)

    Article  Google Scholar 

  69. C. Christodoulou etal., Multivariate analysis of pixelated diffraction data. J. Instrum. 6, C12027 (2011)

    Article  Google Scholar 

  70. R. Moss etal., miniPixD: a compact sample analysis system which combines X-ray imaging and diffraction. J. Instrum. 12, P02001 (2017)

    Article  Google Scholar 

  71. F.J. Fleming etal., Intraoperative margin assessment and re-excision rate in breast conserving surgery. Eur. J. Surg. Oncol. 30, 233–237 (2004)

    Article  CAS  Google Scholar 

  72. M.S. Moran etal., Society of Surgical Oncology – American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 88, 553–564 (2014)

    Article  Google Scholar 

  73. J.K. Pijanka etal., A wide-angle X-ray fibre diffraction method for quantifying collagen orientation across large tissue areas: application to the human eyeball coat. J. Appl. Crystallogr. 46, 1481–1489 (2013)

    Article  CAS  Google Scholar 

  74. S. Pani etal., Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography. Appl. Radiat. Isot. 68, 1980–1987 (2010)

    Article  CAS  Google Scholar 

  75. F.B. de la Cuesta etal., Coherent X-ray diffraction from collagenous soft tissues. Proc. Natl. Acad. Sci. U. S. A. 106, 15297–15301 (2009)

    Article  Google Scholar 

  76. G. Kidane etal., X-ray scatter signatures for normal and neoplastic breast tissues. Phys. Med. Biol. 44, 1791–1802 (1999)

    Article  CAS  Google Scholar 

  77. M. Costa etal., Diagnosis applications of non-crystalline diffraction of collagen fibres: breast cancer and skin diseases. Lect. Notes Phys. 776, 265–280 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moss, R. et al. (2018). Use of Photon Scattering Interactions in Diagnosis and Treatment of Disease. In: Abreu de Souza, M., Remigio Gamba, H., Pedrini, H. (eds) Multi-Modality Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-98974-7_6

Download citation

Publish with us

Policies and ethics