Skip to main content

Human Head Modelling Simulation Applied to Electroconvulsive Therapy

  • Chapter
  • First Online:
  • 373 Accesses

Abstract

Transcranial electrical stimulation includes electrical stimulation techniques used to treat neurological conditions. Computational human head modelling has been used to investigate diverse cases of therapies and treatments. In this chapter, 3D realistic human head models constructed from magnetic resonance images are presented for applications in electroconvulsive therapy (ECT). This technique uses low frequency and applies high amplitude current for a short period. Due to the high currents used in ECT, electrical stimulation may generate heat as per the Joule effect. Therefore, the bio-heat transfer equation coupled to the Laplace equation is implemented in a computational head model to investigate the effect of temperature due to ECT electrical stimulation. Diverse thermophysical parameters and electrode configurations are considered. The results show that, from the thermal point of view, the brain is safe and no increase in temperature is detected. Temperature rises mainly in external layers of head, such as scalp and skull while the inclusion of fat layer will influence temperature behavior. Apart from that, the inclusion of thermal anisotropic conductivity does not significantly influence temperature rise; however, electrical conductivity is an important factor to consider.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Cancelli, C. Cottone, F. Tecchio, D.Q. Truong, J. Dmochowski, M. Bikson, A simple method for EEG guided transcranial electrical stimulation without models. J. Neural Eng. 13, 036022 (2016)

    Article  Google Scholar 

  2. S. Casarotto, P. Canali, M. Rosanova, A. Pigorini, M. Fecchio, M. Mariotti, A. Lucca, C. Colombo, F. Benedetti, M. Massimini, Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography. Brain Topogr. 26, 326–337 (2013)

    Article  Google Scholar 

  3. J.-J. Chen, L.-B. Zhao, Y.-Y. Liu, S.-H. Fan, P. Xie, Comparative efficacy and acceptability of electroconvulsive therapy versus repetitive transcranial magnetic stimulation for major depression: a systematic review and multiple-treatments meta-analysis. Behav. Brain Res. 320, 30–36 (2017)

    Article  Google Scholar 

  4. A. Datta, M. Elwassif, M. Bikson, Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 670–673 (2009)

    PubMed  Google Scholar 

  5. M.M. Elwassif, A. Datta, A. Rahman, M. Bikson, Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture. J. Neural Eng. 9, 046009 (2012)

    Article  Google Scholar 

  6. M.M. Elwassif, Q. Kong, M. Vazquez, M. Bikson, Bio-heat transfer model of deep brain stimulation-induced temperature changes. J. Neural Eng. 3, 306–315 (2006)

    Article  Google Scholar 

  7. A. Fertonani, C. Miniussi, Transcranial electrical stimulation what we know and do not know about mechanisms. Neuroscientist (2016). pii:1073858416631966.

    Google Scholar 

  8. B. Guleyupoglu, P. Schestatsky, D. Edwards, F. Fregni, M. Bikson, Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods 219, 297–311 (2013)

    Article  Google Scholar 

  9. W.H. Lee, Z.-D. Deng, T.-S. Kim, A.F. Laine, S.H. Lisanby, A.V. Peterchev, Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 59, 2110–2123 (2012)

    Article  Google Scholar 

  10. A.V. Peterchev, T.A. Wagner, P.C. Miranda, M.A. Nitsche, W. Paulus, S.H. Lisanby, A. Pascual-Leone, M. Bikson, Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 5, 435–453 (2012)

    Article  Google Scholar 

  11. T. Wagner, A. Valero-Cabre, A. Pascual-Leone, Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9, 527–565 (2007)

    Article  CAS  Google Scholar 

  12. A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, M. Bikson, Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207 (2009)

    Article  Google Scholar 

  13. S. Shahid, P. Wen, T. Ahfock, Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS. Comput. Meth. Prog. Biomed. 109, 48–64 (2013)

    Article  Google Scholar 

  14. R.D. Weiner, The Practice of Electroconvulsive Therapy: Recommendations for Treatment, Training, and Privileging: A Task Force Report of the American Psychiatric Association (Amer. Psych. Assoc., USA, 2002)

    Google Scholar 

  15. M.A. Rosa, S.H. Lisanby, Somatic treatments for mood disorders. Neuropsychopharmacol. 37, 102–116 (2012)

    Article  CAS  Google Scholar 

  16. H.A. Sackeim, J. Long, B. Luber, J.R. Moeller, I. Prohovnik, D. Devanand, M.S. Nobler, Physical properties and quantification of the ECT stimulus: I. Basic principles. J. ECT 10, 93–123 (1994)

    CAS  Google Scholar 

  17. D. Fiala, K.J. Lomas, M. Stohrer, A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87, 1957–1972 (1999)

    Article  CAS  Google Scholar 

  18. P.A. Boulby, F.J. Rugg, in Quantitative MRI of the Brain, ed. by P. Tofts. T2: The Transverse Relaxation Time (John Wiley & Sons Ltd., Chichester, 2003)

    Google Scholar 

  19. P.S. Tofts, in Quantitative MRI of the Brain: Measuring Changes Caused by Disease, ed. by P. Tofts. PD: Proton Density of Tissue Water (John Wiley & Sons Ltd., Chichester, 2003)

    Chapter  Google Scholar 

  20. P.A. Gowland, V.L. Stevenson, in Quantitative MRI of the Brain: Measuring Changes Caused by Disease, ed. by P. Tofts. T1: The Longitudinal Relaxation Time (John Wiley & Sons Ltd., Chichester, 2003)

    Google Scholar 

  21. S.M. Smith, M. Jenkinson, M.W. Woolrich, C.F. Beckmann, T.E. Behrens, H. Johansen-Berg, P.R. Bannister, M. DE Luca, I. Drobnjak, D.E. Flitney, Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  22. V. Positano, in Advanced Image Processing in Magnetic Resonance Imaging, ed. by L. L. V. P. M. F. Santarelli. Image Registration in MRI (Taylor & Francis Group, LLC, Boca Raton, 2005)

    Google Scholar 

  23. P.J. Kostelec, S. Periaswamy, Image registration for MRI. Mod. Signal Process. 46, 161–184 (2003)

    Google Scholar 

  24. L.G. Brown, A survey of image registration techniques. ACM Comput. Surv. 24, 325–376 (1992)

    Article  Google Scholar 

  25. M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002)

    Article  Google Scholar 

  26. I. Despotović, B. Goossens, W. Philips, MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. 2015, 1–23 (2015)

    Article  Google Scholar 

  27. M.N.I. Mcconnell Brain Imaging Center, McGill University. BrainWeb: Simulated brain database. http://www.bic.mni.mcgill.ca/brainweb/

  28. B. Aubert-Broche, A.C. Evans, L. Collins, A new improved version of the realistic digital brain phantom. Neuroimage 32, 138–145 (2006)

    Article  Google Scholar 

  29. S.M. Smith, Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002)

    Article  Google Scholar 

  30. S. Bai, C. Loo, S. Dokos, A review of computational models of transcranial electrical stimulation. Crit. Rev. in Biomed. Eng. 41, 21–35 (2013)

    Article  Google Scholar 

  31. M. Ferdjallah, F. Bostick, R. Barr, Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model. IEEE Trans. Biomed. Eng. 43, 939–943 (1996)

    Article  CAS  Google Scholar 

  32. J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, Oxford, 1995)

    Book  Google Scholar 

  33. S.S. Shahid, Numerical Investigation of Transcranial Direct Current Stimulation on Cortical Modulation. PhD Thesis, University of Southern Queensland (2013).

    Google Scholar 

  34. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Article  CAS  Google Scholar 

  35. L. Bezerra, M.M. Oliveira, T. Rolim, A. Conci, F. Santos, P. Lyra, R. Lima, Estimation of breast tumor thermal properties using infrared images. Signal Process. 93, 2851–2863 (2013)

    Article  Google Scholar 

  36. K.M. Silay, C. Dehollain, M. Declercq, in Numerical Analysis of Temperature Elevation in the Head Due to Power Dissipation in a Cortical Implant. EMBC-IEEE Ann. Int. Conf. pp. 951–956 (2008)

    Google Scholar 

  37. S.A. Berger, W. Goldsmith, E.R. Lewis, Introduction to Bioengineering (Oxford University Press, USA, 1996)

    Google Scholar 

  38. M.M. Christian, S.L. Firebaugh, A.N. Smith, COMSOL thermal model for a heated neural micro-probe. Proc. COMSOL Conf. (2012).

    Google Scholar 

  39. P.A. Hasgall, E. Neufeld, M.C. Gosselin, A. Klingenböck, N. Kuster, IT’IS Database for thermal and electromagnetic parameters of biological tissues (2014)

    Google Scholar 

  40. M.M. Oliveira, P. Wen, T. Ahfock, Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity. Comput. Meth. Prog. Biomed. 133, 71–81 (2016)

    Article  Google Scholar 

  41. M.M. Oliveira, P. Wen, T. Ahfock, Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties in induced temperature variation. EMBC-IEEE Ann. Int. Conf. IEEE (2016)

    Google Scholar 

  42. J. De Munck, The potential distribution in a layered anisotropic spheroidal volume conductor. J. Appl. Phys. 64, 464–470 (1988)

    Article  Google Scholar 

  43. G. Marin, C. Guerin, S. Baillet, L. Garnero, G. Meunier, Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum. Brain Mapp. 6, 250–269 (1998)

    Article  CAS  Google Scholar 

  44. S.P. van den Broek, F. Reinders, M. Donderwinkel, M. Peters, Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106, 522–534 (1998)

    Article  Google Scholar 

  45. C. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. Koch, R. Macleod, Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage 30, 813–826 (2006)

    Article  CAS  Google Scholar 

  46. B.S. Khundrakpam, V.K. Shukla, P.K. Roy, Thermal conduction tensor imaging and energy flow analysis of brain: A feasibility study usingMRI. Ann. Biomed. Eng. 38, 3070–3083 (2010)

    Article  Google Scholar 

  47. W.H. Lee, Z. Liu, B.A. Mueller, K. Lim, B. He, Influence of white matter anisotropic conductivity on EEG source localization: Comparison to fMRI in human primary visual cortex. Clin. Neurophysiol. 120, 2071–2081 (2009)

    Article  Google Scholar 

  48. M.M. Oliveira, P. Wen, T. Ahfock, S.S. Shahid, A preliminary study about the distribution of temperature due to electrical stimulation in ECT (Int. Conf. Complex Med. Eng., Taipei, Taiwan, 2014)

    Google Scholar 

  49. M.M. Oliveira, Human head temperature and electric field investigations under ECT, PhD Thesis, University of Southern Queensland, (2017)

    Google Scholar 

  50. S. Kim, P. Tathireddy, R. Normann, F. Solzbacher, Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 493–501 (2007)

    Article  Google Scholar 

  51. S. Bai, C. Loo, A. Al Abed, S. Dokos, A computational model of direct brain excitation induced by electroconvulsive therapy: comparison among three conventional electrode placements. Brain Stimul. 5, 408–421 (2012)

    Article  Google Scholar 

  52. E.J. Berjano, J. Saiz, J.M. Ferrero, Radio-frequency heating of the cornea: Theoretical model and in vitro experiments. IEEE Trans. Biomed. Eng. 49, 196–205 (2002)

    Article  Google Scholar 

  53. H. Watanabe, N. Yamazaki, Y. Kobayashi, T. Miyashita, M. Hashizume, M.G. Fujie, in Temperature Dependence of Thermal Conductivity of Liver Based on Various Experiments and a Numerical Simulation for RF Ablation. EMBC-IEEE Ann. Int. Conf. IEEE 2010. pp. 3222–3228 (2010)

    Google Scholar 

  54. C.M. Swartz, Safety and ECT stimulus electrodes: I. Heat liberation at the electrode-skin interface. J. ECT 5, 171–175 (1989)

    Google Scholar 

  55. S. S. Shahid, P. Wen, T. Ahfock, in Effect of fat and muscle tissue conductivity on cortical currents—A tDCS study. 2011 IEEE/ICME Int. Conf. Complex Med. Eng. pp. 211–215 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Menezes de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, M.M.d., Song, B., Ahfock, T., Li, Y., Wen, P. (2018). Human Head Modelling Simulation Applied to Electroconvulsive Therapy. In: Abreu de Souza, M., Remigio Gamba, H., Pedrini, H. (eds) Multi-Modality Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-98974-7_5

Download citation

Publish with us

Policies and ethics