Big Data and Analytics as Strategies to Generate Public Value in Smart Cities: Proposing an Integrative Framework

  • Felippe Cronemberger
  • J. Ramon Gil-GarciaEmail author
Part of the Public Administration and Information Technology book series (PAIT, volume 35)


What is the path to smarter cities that can make data-driven decisions? In a context where data have been vastly advertised as a solution to many problems, the application of big data analytics (BDA) in government is a trending topic. As a topic and potential strategy, data is on the agenda of researchers and policy-makers worldwide, based on the hope that the use of data and technology could enable better quality of life in communities and cities. This chapter analyzes the potential of BDA for local governments, particularly in the context of smart city initiatives. The chapter also proposes an integrative framework to better understand all the components of these concepts and their interrelationships. The overall goal is to discuss what it means to cities to use data in practice, what challenges could be anticipated, and how some of those challenges could be mitigated. This will also contribute to a better explanation of the role of information sharing, integration, and collaboration in BDA and its potential to generate public value in smart city initiatives.


Smart cities Big data Data analytics Information sharing Information integration Public value 



The authors would like to thank CAPES and the Office of Graduate Studies at the University at Albany, which provided partial funding for this research. The opinions expressed in this chapter are those of the authors and do not necessarily reflect the official views of CAPES or the University at Albany.


  1. Abbasi, A., Sarker, S., & Chiang, R. H. (2016). Big data research in information systems: Toward an inclusive research agenda. Journal of the Association for Information Systems, 17, 3.CrossRefGoogle Scholar
  2. Abella, A., Ortiz-de-Urbina-Criado, M., & De-Pablos-Heredero, C. (2017). A model for the analysis of data-driven innovation and value generation in smart cities’ ecosystems. Cities, 64, 47–53.CrossRefGoogle Scholar
  3. Abukhousa, E., & Atif, Y. (2015). Big learning data analytics support for engineering career readiness. In 2014 International Conference on Interactive Collaborative Learning (ICL) (pp. 663–668). Piscataway, NJ: IEEE.Google Scholar
  4. Acebo, A., Franks, B., Leonard, T., Manthey, K., & Burgess, M. (2012). BI experts’ perspective: Attracting analytics talent. Business Intelligence Journal, 17, 21–27.Google Scholar
  5. Agranoff, R., & McGuire, M. (2003). Inside the matrix: Integrating the paradigms of intergovernmental and network management. International Journal of Public Administration, 26, 1401–1422.CrossRefGoogle Scholar
  6. Ajabi, M., Boukhris, I., & Elouedi, Z. (2016). Big data classification using belief decision trees: Application to intrusion detection. In The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28–30, 2015 (pp. 369–379). Beni Suef, Egypt: Springer.Google Scholar
  7. Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131.CrossRefGoogle Scholar
  8. Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22, 3–21.CrossRefGoogle Scholar
  9. Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: Why HR is set to fail the big data challenge. Human Resource Management Journal, 26, 1–11.CrossRefGoogle Scholar
  10. Anttiroiko, A.-V., Valkama, P., & Bailey, S. J. (2014). Smart cities in the new service economy: Building platforms for smart services. AI & Society, 29(3), 323–334.CrossRefGoogle Scholar
  11. Asal, V., Mauslein, J., Murdie, A., Young, J., Cousins, K., & Bronk, C. (2016). Repression, education, and politically motivated cyberattacks. Journal of Global Security Studies, 1, 235–247.CrossRefGoogle Scholar
  12. Baekgaard, M., & Serritzlew, S. (2016). Interpreting performance information: Motivated reasoning or unbiased comprehension. Public Administration Review, 76, 73–82.CrossRefGoogle Scholar
  13. Bardach, E. (1998). Getting agencies to work together: The practice and theory of managerial craftsmanship. Washington, DC: Brookings Institution Press.Google Scholar
  14. Bassi, A. M., Deenapanray, P. S., & al Davidsen, P. (2013). Energy policy planning for climate-resilient low-carbon development. In Energy policy modeling in the 21st century (pp. 125–156). New York: Springer.CrossRefGoogle Scholar
  15. Bătăgan, L. (2011). Smart cities and sustainability models. Informatica Economică, 15, 80–87.Google Scholar
  16. Benington, J., & Moore, M. H. (2010). Public value: Theory and practice. Basingstoke, UK: Palgrave Macmillan.Google Scholar
  17. Berman, J. J. (2013). Principles of big data: Preparing, sharing, and analyzing complex information. San Francisco, CA: Morgan Kaufmann Publishers.Google Scholar
  18. Bernardino, S., & Santos, J. F. (2017). Building smarter cities through social entrepreneurship. In Handbook of research on entrepreneurial development and innovation within smart cities (pp. 327–362). Hershey, PA: IGI Global.CrossRefGoogle Scholar
  19. Bharosa, N., Lee, J., & Janssen, M. (2010). Challenges and obstacles in sharing and coordinating information during multi-agency disaster response: Propositions from field exercises. Information Systems Frontiers, 12, 49–65.CrossRefGoogle Scholar
  20. Borgman, C. L. (2000). From Gutenberg to the global information infrastructure: Access to information in the networked world. Cambridge, UK: MIT Press.Google Scholar
  21. Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15, 662–679.CrossRefGoogle Scholar
  22. Brown, G., de Bie, K., & Weber, D. (2015). Identifying public land stakeholder perspectives for implementing place-based land management. Landscape and Urban Planning, 139, 1–15.CrossRefGoogle Scholar
  23. Brown, J. S., & Duguid, P. (2000). The social life of information. Boston, MA: Harvard Business Press.Google Scholar
  24. Bryson, J., Sancino, A., Benington, J., & Sørensen, E. (2016). Towards a multi-actor theory of public value co-creation. Public Management Review, 19, 1–15.Google Scholar
  25. Bryson, J. M. (2004). What to do when stakeholders matter: Stakeholder identification and analysis techniques. Public Management Review, 6, 21–53.CrossRefGoogle Scholar
  26. Bhatia, A., & Vaswani, G. (2013). Big data-a review. IEEE International Journal of Engineering Sciences & Research Technology IJESRT.Google Scholar
  27. Chang, V., Ramachandran, M., Wills, G., Walters, R. J., Li, C.-S., & Watters, P. (2016). Editorial for FGCS special issue: Big data in the cloud. Future Generation Computer Systems, 65, 73–75.CrossRefGoogle Scholar
  28. Chatfield, A. T., & Reddick, C. G. (2017). Customer agility and responsiveness through big data analytics for public value creation: A case study of Houston 311 on-demand services. Government Information Quarterly, 35(2), 336–347.CrossRefGoogle Scholar
  29. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19, 171–209.CrossRefGoogle Scholar
  30. Chen, Y.-C., & Hsieh, T.-C. (2016). Big data for digital government: Opportunities, challenges, and strategies. In Politics and social activism: Concepts, methodologies, tools, and applications (pp. 1394–1407). Hershey, PA: IGI Global.CrossRefGoogle Scholar
  31. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., … Scholl, H. J. (2012). Understanding smart cities: An integrative framework. In 2012 45th Hawaii International Conference on System Science (HICSS) (pp. 2289–2297). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  32. Cocchia, A., & Dameri, R. P. (2016). Exploring smart city vision by university, industry and government. In Blurring the boundaries through digital innovation (pp. 259–270). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  33. Connelly, R., Playford, C. J., Gayle, V., & Dibben, C. (2016). The role of administrative data in the big data revolution in social science research. Social Science Research, 59, 1–12.CrossRefGoogle Scholar
  34. Cordella, A., & Paletti, A. (2017). Value creation, ICT, and co-production in public sector: Bureaucracy, opensourcing and crowdsourcing. In Proceedings of the 18th Annual International Conference on Digital Government Research (pp. 185–194). New York: ACM.CrossRefGoogle Scholar
  35. Costa, G. B., Huber, M. R., & Saccoman, J. T. (2007). Understanding sabermetrics: An introduction to the science of baseball statistics. Jefferson, NC: McFarland.Google Scholar
  36. Cristofoli, D., Meneguzzo, M., & Riccucci, N. (2017). Collaborative administration: The management of successful networks. Public Management Review, 19, 275–283.CrossRefGoogle Scholar
  37. Crosby, B. C., ‘t Hart, P., & Torfing, J. (2017). Public value creation through collaborative innovation. Public Management Review, 19, 655–669.CrossRefGoogle Scholar
  38. Curry, E. (2016). The big data value chain: Definitions, concepts, and theoretical approaches. In J. M. Cavanillas, E. Curry, & W. Wahlster (Eds.), New horizons for a data-driven economy (pp. 29–37). Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  39. Curwell, S., Deakin, M., Cooper, I., Paskaleva-Shapira, K., Ravetz, J., & Babicki, D. (2005). Citizens’ expectations of information cities: Implications for urban planning and design. Building Research and Information, 33, 55–66.CrossRefGoogle Scholar
  40. Dahl, A., & Soss, J. (2014). Neoliberalism for the common good? Public value governance and the downsizing of democracy. Public Administration Review, 74, 496–504.CrossRefGoogle Scholar
  41. Daley, D. M. (2009). Interdisciplinary problems and agency boundaries: Exploring effective cross-agency collaboration. Journal of Public Administration Research and Theory, 19, 477–493.CrossRefGoogle Scholar
  42. Dameri, R. P., & Rosenthal-Sabroux, C. (2014). Smart city and value creation. In Smart city (pp. 1–12). Wiesbaden, Germany: Springer.Google Scholar
  43. Davenport, T. H., Harris, J. G., Long, D. W. D., & Jacobson, A. L. (2001). Data to knowledge to results: Building an analytic capability. California Management Review, 43, 117–138.CrossRefGoogle Scholar
  44. Davenport, T. H., & Prusak, L. (1998). Working knowledge: How organizations manage what they know. Boston, MA: Harvard Business Press.Google Scholar
  45. Dawes, S. S., Cresswell, A. M., & Pardo, T. A. (2009). From “need to know” to “need to share”: Tangled problems, information boundaries, and the building of public sector knowledge networks. Public Administration Review, 69, 392–402.CrossRefGoogle Scholar
  46. DeSanctis, G., & Poole, M. S. (1994). Capturing the complexity in advanced technology use: Adaptive structuration theory. Organization Science, 5, 121–147.CrossRefGoogle Scholar
  47. Desouza, K. C., & Jacob, B. (2017). Big data in the public sector: Lessons for practitioners and scholars. Administration and Society, 49(7), 1043–1064.CrossRefGoogle Scholar
  48. Dhar, V., & Stein, R. (1997). Seven methods for transforming corporate data into business intelligence. Cliffs, NJ: Prentice Hall Englewood.Google Scholar
  49. Dremel, C., Overhage, S., Schlauderer, S., & Wulf, J. (2017). Towards a capability model for big data analytics (pp. 1141–1155). St. Gallen, Switzerland: Universität St.Gallen.Google Scholar
  50. Eichbaum, C., & Lofgren, K. (2016). Big data and public service delivery - big hype? Public Sector, 39, 4.Google Scholar
  51. Emerson, K., Nabatchi, T., & Balogh, S. (2012). An integrative framework for collaborative governance. Journal of Public Administration Research and Theory, 22, 1–29.CrossRefGoogle Scholar
  52. Erl, T., Khattak, W., & Buhler, P. (2016). Big data fundamentals: Concepts, drivers & techniques. Boston, MA: Prentice Hall Press.Google Scholar
  53. Franks, B. (2012). Taming the big data tidal wave: Finding opportunities in huge data streams with advanced analytics. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
  54. Gagliardi, D., Schina, L., Sarcinella, M. L., Mangialardi, G., Niglia, F., & Corallo, A. (2017). Information and communication technologies and public participation: Interactive maps and value added for citizens. Government Information Quarterly, 34, 153–166.CrossRefGoogle Scholar
  55. Gamage, P. (2016). New development: Leveraging ‘big data’ analytics in the public sector. Public Money & Management, 36, 385–390.CrossRefGoogle Scholar
  56. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35, 137–144.CrossRefGoogle Scholar
  57. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: Methods and prospects. Big Data Analytics, 1, 9.CrossRefGoogle Scholar
  58. Gascó, M. (2003). New technologies and institutional change in public administration. Social Science Computer Review, 21, 6–14.CrossRefGoogle Scholar
  59. Gascó, M., Trivellato, B., & Cavenago, D. (2016). How do southern European cities foster innovation? Lessons from the experience of the smart city approaches of Barcelona and Milan. In Smarter as the new urban agenda (pp. 191–206). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  60. Gasco-Hernandez, D. M. (2017). Is it more than using data and technology in local governments? Identifying opportunities and challenges for cities to become smarter. UMKC Law Review, 85, 915.Google Scholar
  61. Giffinger, R., & Gudrun, H. (2010). Smart cities ranking: An effective instrument for the positioning of the cities? ACE: Architecture, City and Environment, 4, 7–26.Google Scholar
  62. Gil-Garcia, J. R. (2012). Towards a smart state? Inter-agency collaboration, information integration, and beyond. Information Polity the International Journal of Government and Democracy in the Information Age, 17, 269–280.Google Scholar
  63. Gil-Garcia, J. R., Chun, S., & Janssen, M. (2009). Government information sharing and integration: Combining the social and the technical. Information Polity, 14, 1–10.CrossRefGoogle Scholar
  64. Gil-Garcia, J. R., Helbig, N., & Ojo, A. (2014). Being smart: Emerging technologies and innovation in the public sector. Government Information Quarterly, 31, I1–I8.CrossRefGoogle Scholar
  65. Gil-Garcia, J. R., & Pardo, T. A. (2005). E-government success factors: Mapping practical tools to theoretical foundations. Government Information Quarterly, 22, 187–216.CrossRefGoogle Scholar
  66. Gil-Garcia, J. R., Pardo, T. A., & Luna-Reyes, L. F. (2018). Policy analytics: Definitions, components, methods, and illustrative examples. In Policy analytics, modelling, and informatics (pp. 1–16). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  67. Gil-Garcia, J. R., & Sayogo, D. S. (2016). Government inter-organizational information sharing initiatives: Understanding the main determinants of success. Government Information Quarterly, 33(3), 572–582.CrossRefGoogle Scholar
  68. Gil-Garcia, J. R., Zhang, J., & Puron-Cid, G. (2016). Conceptualizing smartness in government: An integrative and multi-dimensional view. Government Information Quarterly, 33(3), 524–534.CrossRefGoogle Scholar
  69. Grabiner, D. (1994). The sabermetric manifesto. In The Baseball Archive.Google Scholar
  70. Gray, B. (1989). Collaborating: Finding common ground for multiparty problems. San Francisco, CA: Jossey Bass.Google Scholar
  71. Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317.CrossRefGoogle Scholar
  72. Gutiérrez, V., Theodoridis, E., Mylonas, G., Shi, F., Adeel, U., Diez, L., et al. (2016). Co-creating the cities of the future. Sensors, 16, 1–27.CrossRefGoogle Scholar
  73. Haarstad, H. (2016). Who is driving the ‘smart city’ agenda? Assessing smartness as a governance strategy for cities in Europe. In Services and the green economy (pp. 199–218). London: Palgrave Macmillan.Google Scholar
  74. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and Development, 54, 1–16.CrossRefGoogle Scholar
  75. Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., … Chiroma, H. (2016). The role of big data in smart city. International Journal of Information Management, 36, 748–758.CrossRefGoogle Scholar
  76. Hawkins, C. V. (2011). Smart growth policy choice: A resource dependency and local governance explanation. Policy Studies Journal, 39, 679–707.CrossRefGoogle Scholar
  77. Heger, D. (2014). Big data analytics—‘Where to go from here’. International Journal of Developments in Big Data and Analytics, 1, 42–58.Google Scholar
  78. Henning, F. (2016). A theoretical framework on the determinants of organisational adoption of interoperability standards in government information networks. Government Information Quarterly.Google Scholar
  79. Hilbert, M. (2013). Big data for development: From information-to knowledge societies. Available SSRN 2205145.Google Scholar
  80. Hollands, R. G. (2008). Will the real smart city please stand up? City, 12, 303–320.CrossRefGoogle Scholar
  81. Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338–345.CrossRefGoogle Scholar
  82. Japkowicz, N., & Stefanowski, J. (2016). A machine learning perspective on big data analysis. In Big data analysis: New algorithms for a new society (pp. 1–31). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  83. Jie, S., & Chen, H. (2015). Internet finance innovation and traditional bank transformation based on big data. Finance & Economics, 1.Google Scholar
  84. Ji-fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2016). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55, 1–16.Google Scholar
  85. Johnston, E. (2010). Governance infrastructures in 2020. Public Administration Review, 70, s122–s128.CrossRefGoogle Scholar
  86. Joseph, R. C., & Johnson, N. A. (2013). Big data and transformational government. IT Professional, 15, 43–48.CrossRefGoogle Scholar
  87. Jungstrand, A., & Ceco, P. (2017). Succeeding with smart people initiatives: Difficulties and preconditions for smart city initiatives that target citizens. Lund, Sweden: Lunds universitet/Institutionen för informatik.Google Scholar
  88. Kapucu, N., & Hu, Q. (2016). Understanding multiplexity of collaborative emergency management networks. The American Review of Public Administration, 46, 399–417.CrossRefGoogle Scholar
  89. Karydis, I., Sioutas, S., Avlonitis, M., Mylonas, P., & Kanavos, A. (2016). A survey on big data and collective intelligence. In Proceedings of International Workshop on Algorithmic Aspects of Cloud Computing, ALGOCLOUD. Cham, Switzerland: Springer.CrossRefGoogle Scholar
  90. Khalifa, S., Elshater, Y., Sundaravarathan, K., Bhat, A., Martin, P., Imam, F., … Statchuk, C. (2016). The six pillars for building big data analytics ecosystems. ACM Computing Surveys (CSUR), 49, 33.CrossRefGoogle Scholar
  91. Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M., … Gani, A. (2014). Big data: Survey, technologies, opportunities, and challenges. Scientific World Journal, 2014, 18.Google Scholar
  92. Khatoun, R., & Zeadally, S. (2016). Smart cities: Concepts, architectures, research opportunities. Communications of the ACM, 59, 46–57.CrossRefGoogle Scholar
  93. Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data applications in the government sector. Communications of the ACM, 57(3), 78–85.CrossRefGoogle Scholar
  94. Klievink, B., Romijn, B.-J., Cunningham, S., & de Bruijn, H. (2016). Big data in the public sector: Uncertainties and readiness. Information Systems Frontiers, 19(2), 1–17.Google Scholar
  95. Koh, J. M., Sak, M., Tan, H.-X., Liang, H., Folianto, F., & Quek, T. (2015). Efficient data retrieval for large-scale smart city applications through applied Bayesian inference. In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (pp. 1–6). Piscataway, NJ: IEEE.Google Scholar
  96. Koliba, C., Wiltshire, S., Scheinert, S., Turner, D., Zia, A., & Campbell, E. (2017). The critical role of information sharing to the value proposition of a food systems network. Public Management Review, 19, 284–304.CrossRefGoogle Scholar
  97. Kourtit, K., Nijkamp, P., & Arribas, D. (2012). Smart cities in perspective–a comparative European study by means of self-organizing maps. Innovation: The European Journal of Social Science Research, 25, 229–246.Google Scholar
  98. Kreps, D., & Richardson, H. (2007). IS success and failure—The problem of scale. The Political Quarterly, 78, 439–446.CrossRefGoogle Scholar
  99. Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data. Proceedings of the VLDB Endowment, 5, 2032–2033.CrossRefGoogle Scholar
  100. Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6, 70.Google Scholar
  101. Larson, S. J. (2017). A critical perspective on evidence-based policy making. Public Administration Review, 77, 787–790.CrossRefGoogle Scholar
  102. Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., et al. (2009). Life in the network: The coming age of computational social science. Science (New York, NY), 323, 721.CrossRefGoogle Scholar
  103. Lee, J. H., Hancock, M. G., & Hu, M.-C. (2014). Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco. Technological Forecasting and Social Change, 89, 80–99.CrossRefGoogle Scholar
  104. Li, F., Nucciarelli, A., Roden, S., & Graham, G. (2016). How smart cities transform operations models: A new research agenda for operations management in the digital economy. Production Planning and Control, 27, 514–528.CrossRefGoogle Scholar
  105. Linoff, G. S., & Berry, M. J. (2011). Data mining techniques: For marketing, sales, and customer relationship management. Hoboken, NJ: John Wiley & Sons.Google Scholar
  106. Liu, X., & Zheng, L. (2015). Cross-departmental collaboration in one-stop service center for smart governance in China: Factors, strategies and effectiveness. Government Information Quarterly.Google Scholar
  107. Luna-Reyes, L. F., Gil-Garcia, J. R., & Cruz, C. B. (2007). Collaborative digital government in Mexico: Some lessons from federal web-based interorganizational information integration initiatives. Government Information Quarterly, 24, 808–826.CrossRefGoogle Scholar
  108. Luna-Reyes, L. F., Gil-Garcia, J. R., & Estrada-Marroquín, M. (2008). The impact of institutions on interorganizational IT projects in the Mexican federal government. International Journal of Electronic Government Research (IJEGR), 4, 27.CrossRefGoogle Scholar
  109. Luna-Reyes, L. F., Picazo-Vela, S., Luna, D. E., & Gil-Garcia, J. R. (2016). Creating public value through digital government: Lessons on inter-organizational collaboration and information technologies. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 2840–2849). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  110. Luna-Reyes, L. F., Sandoval-Almazan, R., Puron-Cid, G., Picazo-Vela, S., Luna, D. E., & Gil-Garcia, J. R. (2017). Understanding public value creation in the delivery of electronic services. In International Conference on Electronic Government (pp. 378–385). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  111. Malomo, F., & Sena, V. (2017). Data intelligence for local government? Assessing the benefits and barriers to use of big data in the public sector. Policy Internet, 9, 7–27.CrossRefGoogle Scholar
  112. Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. New York: Houghton Mifflin Harcourt.Google Scholar
  113. McLuhan, M. (1994). Understanding media: The extensions of man. Cambridge, UK: MIT Press.Google Scholar
  114. Mergel, I., Rethemeyer, R. K., & Isett, K. (2016). Big data in public affairs. Public Administration Review, 76, 928–937.CrossRefGoogle Scholar
  115. Moore, M. H. (2014). Public value accounting: Establishing the philosophical basis. Public Administration Review, 74, 465–477.CrossRefGoogle Scholar
  116. Morandi, C., & Rolando, A. (2016). How can ICTs be drivers of spatial innovation? Urban digital nodes for the smart region between Milan and Turin. In From smart city to smart region (pp. 1–18). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  117. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60–68.Google Scholar
  118. Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times (p. 282). New York: ACM.CrossRefGoogle Scholar
  119. Nograšek, J., & Vintar, M. (2014). E-government and organisational transformation of government: Black box revisited? Government Information Quarterly, 31, 108–118.CrossRefGoogle Scholar
  120. O’Leary, D. E. (2013). ‘Big data’, the ‘internet of things’ and the ‘internet of signs’. Intelligent Systems in Accounting, Finance and Management, 20, 53–65.CrossRefGoogle Scholar
  121. O’Leary, R., & Vij, N. (2012). Collaborative public management: Where have we been and where are we going? The American Review of Public Administration, 42(5), 507–522.CrossRefGoogle Scholar
  122. Oomens, I. M. F., & Sadowski, B. M. (2017). The importance of value creation in smart city initiatives: An ecosystem approach. Passau, Germany: International Telecommunications Society (ITS).Google Scholar
  123. Orlikowski, W. J. (2000). Using technology and constituting structures: A practice lens for studying technology in organizations. Organization Science, 11, 404–428.CrossRefGoogle Scholar
  124. Orlikowski, W. J., & Iacono, C. S. (2006). Desperately seeking the ‘IT’ in IT research: A call to theorizing the IT artifact. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
  125. Pardo, T. A., Gil-Garcia, J. R., & Burke, G. B. (2006). Building response capacity through cross-boundary information sharing: The critical role of trust. In Exploiting the knowledge economy: Issues, applications, case studies (pp. 507–514). Dublin, Ireland: IIMC.Google Scholar
  126. Pardo, T. A., Gil-Garcia, J. R., & Burke, G. B. (2008). Sustainable cross-boundary information sharing. In D. H. Chen, P. M. L. Brandt, A. D. V. Gregg, P. R. Traunmüller, D. S. Dawes, E. Hovy, P. A. Macintosh, & A. D. C. A. Larson (Eds.), Digital government (pp. 421–438). Boston, MA: Springer US.CrossRefGoogle Scholar
  127. Pardo, T. A., Nam, T., & Burke, G. B. (2011). E-government interoperability: Interaction of policy, management, and technology dimensions. Social Science Computer Review, 30(1), 7–23.CrossRefGoogle Scholar
  128. Pereira, G. V., Macadar, M. A., Luciano, E. M., & Testa, M. G. (2017). Delivering public value through open government data initiatives in a smart city context. Information Systems Frontiers, 19, 213–229.CrossRefGoogle Scholar
  129. Picazo-Vela, S., Gutiérrez-Martínez, I., Duhamel, F., Luna, D. E., & Luna-Reyes, L. F. (2017). Value of inter-organizational collaboration in digital government projects. Public Management Review, 20(5), 1–18.Google Scholar
  130. Pinch, T. J., & Bijker, W. E. (1987). The social construction of facts and artifacts: Or how the sociology of science and the sociology of technology might benefit each other. The Social Constructions of Technological Systems: New Directions in the Sociology and History of Technology, 17, 1–6.Google Scholar
  131. Puerzer, R. J. (2002). From scientific baseball to sabermetrics: Professional baseball as a reflection of engineering and management in society. NINE: A Journal of Baseball History and Culture, 11, 34–48.CrossRefGoogle Scholar
  132. Puron-Cid, G., Gil-Garcia, J. R., & Luna-Reyes, L. F. (2016). Opportunities and challenges of policy informatics: Tackling complex problems through the combination of open data, technology and analytics. International Journal of Public Administration in the Digital Age (IJPADA), 3, 66–85.CrossRefGoogle Scholar
  133. Pfeffer, J., & Sutton, R. I. (2006). Evidence-based management. Harvard business review, 84(1), 62.Google Scholar
  134. Rasmussen, T., & Ulrich, D. (2015). Learning from practice: How HR analytics avoids being a management fad. Organizational Dynamics, 44, 236–242.CrossRefGoogle Scholar
  135. Sayogo, D. S., Zhang, J., Luna-Reyes, L., Jarman, H., Tayi, G., Andersen, D. L., … Andersen, D. F. (2015). Challenges and requirements for developing data architecture supporting integration of sustainable supply chains. Information Technology and Management, 16, 5–18.CrossRefGoogle Scholar
  136. Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., & Oliveira, A. (2011). Smart cities and the future internet: Towards cooperation frameworks for open innovation. In The future internet assembly (pp. 431–446). Berlin, Germany: Springer.CrossRefGoogle Scholar
  137. Scholl, H. J., & Scholl, M. C. (2014). Smart governance: A roadmap for research and practice. IConference 2014 Proceedings.Google Scholar
  138. Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., & McCulloch, R. E. (2016). Bayes and big data: The consensus Monte Carlo algorithm. International Journal of Management Science and Engineering Management, 11, 78–88.CrossRefGoogle Scholar
  139. Song, H., Srinivasan, R., Sookoor, T., & Jeschke, S. (2017). Smart cities: Foundations, principles, and applications. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
  140. Strawn, G. O. (2012). Scientific research: How many paradigms? Education Review, 47, 26.Google Scholar
  141. Sagiroglu, S., & Sinanc, D. (2013, May). Big data: A review. In Collaboration Technologies and Systems (CTS), 2013 International Conference on (pp. 42–47). IEEE.Google Scholar
  142. Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51, 463–479.CrossRefGoogle Scholar
  143. Toots, M., McBride, K., Kalvet, T., & Krimmer, R. (2017). Open data as enabler of public service co-creation: Exploring the drivers and barriers. In 2017 Conference for, E-Democracy and Open Government (CeDEM) (pp. 102–112). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  144. Toppeta, D. (2010). The smart city vision: How innovation and ICT can build smart, “livable”, sustainable cities. The Innovation Knowledge Foundation, 5, 1–9.Google Scholar
  145. Townsend, A. M. (2013). Smart cities: Big data, civic hackers, and the quest for a new utopia. New York: WW Norton & Company.Google Scholar
  146. Walravens, N., & Ballon, P. (2013). Platform business models for smart cities: From control and value to governance and public value. IEEE Communications Magazine, 51, 72–79.CrossRefGoogle Scholar
  147. Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365.CrossRefGoogle Scholar
  148. Watson, H. J., & Wixom, B. H. (2007). The current state of business intelligence. Computer, 40, 96–99.CrossRefGoogle Scholar
  149. Weerakkody, V., Kapoor, K., Balta, M. E., Irani, Z., & Dwivedi, Y. K. (2017). Factors influencing user acceptance of public sector big open data. Production Planning and Control, 28, 891–905.CrossRefGoogle Scholar
  150. Winner, L. (1980). Do artifacts have politics? (pp. 121–136). Cambridge, UK: Daedalus.Google Scholar
  151. Winner, L. (2010). The whale and the reactor: A search for limits in an age of high technology. Chicago, IL: University of Chicago Press.Google Scholar
  152. World Health Organization. (2016). Urban population growth.
  153. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84.CrossRefGoogle Scholar
  154. Yang, T.-M., & Maxwell, T. A. (2011). Information-sharing in public organizations: A literature review of interpersonal, intra-organizational and inter-organizational success factors. Government Information Quarterly, 28, 164–175.CrossRefGoogle Scholar
  155. Zainal, N. Z. B., Hussin, H., & Nazri, M. N. M. (2016). Big data initiatives by governments - Issues and challenges: A review. In 2016 6th International Conference on Information and Communication Technology for the Muslim World (Ict4m) (pp. 304–309). New York: IEEE.CrossRefGoogle Scholar
  156. Zygiaris, S. (2013). Smart city reference model: Assisting planners to conceptualize the building of smart city innovation ecosystems. Journal of the Knowledge Economy, 4, 217–231.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University at Albany, State University of New YorkAlbanyUSA
  2. 2.Universidad de las Americas PueblaSan Andrés CholulaMexico

Personalised recommendations