Skip to main content

An Overview of Nuclear Imaging

  • Chapter
  • First Online:
Radiopharmaceutical Chemistry

Abstract

Radionuclide imaging involves the use of unsealed sources of radioactivity which are administered in the form of radiopharmaceuticals. The ionizing radiations which accompany the decay of the administered radioactivity can be detected, measured, and imaged with instruments such as gamma cameras and single-photon emission tomography (SPECT) and positron-emission tomography (PET) scanners. The distinctive and important advantages of radionuclide-based molecular imaging—high detection sensitivity and “image-ability” of non-perturbing doses of radiopharmaceuticals, quantitation, and a vast array of radiopharmaceuticals—ensure that this modality (particularly in combination with computed tomography and magnetic resonance imaging) will remain invaluable in clinical practice and in clinical and preclinical research. This chapter reviews the design and operating principles as well as the capabilities and limitations of instruments used clinically and preclinically for in vivo radionuclide imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although nuclear medicine remains primarily a diagnostic specialty, unsealed sources of radioactivity are also used therapeutically. The therapeutic applications of nuclear medicine are beyond the scope of this chapter, however.

  2. 2.

    Energy resolution is a parameter which reflects the ability of radiation detectors to distinguish radiations of different energies.

  3. 3.

    High-energy (> ~1-MeV) beta particles (such as those emitted by the pure beta-particle emitter yttium-90, for example) produce a small but imageable amount of bremsstrahlung [“brake radiation”) x-rays] as they slow down in tissue. Bremsstrahlung imaging is not widely used, however, and produces poor quality images.

References

  1. Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007; 48:18N, 21N.

    Google Scholar 

  2. Zanzonico P. Principles of nuclear medicine imaging. Planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177(4):349–64.

    Article  CAS  PubMed  Google Scholar 

  3. Zanzonico P, Heller S. Physics, instrumentation, and radiation protection. In: Biersack HJ, Freeman LM, editors. Clinical nuclear medicine. Berlin/ Heidelberg: Springer-Verlag; 2007. p. 1–33.

    Google Scholar 

  4. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.

    Article  PubMed  Google Scholar 

  5. Otte N. The silicon photomultiplier – a new device for high energy physics, astroparticle physics, industrial and medical applications (0018). SNIC Symposium, 2006, April 3–6. Palo Alto: Stanford University; 2006. www.slac.stanford.edu/econf/C0604032/papers/0018.pdf Accessed 24 May 2018.

  6. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging. 2003;30(11):1574–97.

    Article  PubMed  Google Scholar 

  7. Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med. 2004;34(2):87–111.

    Article  PubMed  Google Scholar 

  8. Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  9. Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41(3):166–81.

    Article  PubMed  Google Scholar 

  10. Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49(7):1114–31.

    Article  PubMed  Google Scholar 

  11. Saha GS. Physics and radiobiology of nuclear medicine. New York: Springer-Verlag; 1993. p. 107–23.

    Book  Google Scholar 

  12. Zanzonico PB. Technical requirements for SPECT: equipment and quality control. In: Kramer EL, Sanger JJ, editors. Clinical applications in SPECT. New York: Raven Press; 1995. p. 7–41.

    Google Scholar 

  13. Frey EC, Humm JL, Ljungberg M. Accuracy and precision of radioactivity quantification in nuclear medicine images. Semin Nucl Med. 2012;42(3):208–18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tsui BM, Zhao X, Frey EC, McCartney WH. Quantitative single-photon emission computed tomography: basics and clinical considerations. Semin Nucl Med. 1994;24(1):38–65.

    Article  CAS  PubMed  Google Scholar 

  15. Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, Ljungberg M. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310–25.

    Article  CAS  PubMed  Google Scholar 

  16. Townsend DW, Bendriem B. Introduction to 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET, B. Dordrecht: Kluwer Academic Publishers; 1998. p. 1–10.

    Google Scholar 

  17. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia: Saunders; 2003.

    Google Scholar 

  18. Lewellen TK. Time-of-flight PET. Semin Nucl Med. 1998;28(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  19. Moses W. Recent advances and future advances in time-of-flight pet. Nucl Instrum Methods Phys Res A. 2007;580(2):919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49(3):462–70.

    Article  PubMed  Google Scholar 

  21. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44(3):781–99.

    Article  CAS  PubMed  Google Scholar 

  22. Derenzo SE. Mathematical removal of positron range blurring in high-resolution tomography. IEEE Trans Nucl Sci. 1986;33(1):565–9.

    Article  Google Scholar 

  23. Berko S, Hereford FL. Experimental studies of positron interactions in solids and liquids. Rev Mod Phys. 1956;28(3):299–307.

    Article  CAS  Google Scholar 

  24. Yang Y, Wu Y, Qi J, St James S, Du H, Dokhale PA, et al. A prototype PET scanner with DOI-encoding detectors. J Nucl Med. 2008;49(7):1132–40.

    Article  PubMed  Google Scholar 

  25. Mosset JB, Devroede O, Krieguer M, Rey M, Vieira JM Jung JH, et al. Development of an optimised LSO/LuYAP phoswich detector head for the ClearPET camera. IEEE Nucl Sci Sym Conf Rec. 2004:2439–2443.

    Google Scholar 

  26. Greer K, Jaszczak RJ, Harris C, Coleman RE. Quality control in SPECT. J Nucl Med Technol. 1985;13(2):76–85.

    Google Scholar 

  27. Harkness BA, Rogers WL, Clinthorne NH, Keyes JW Jr. SPECT: Quality control procedures and artifact identification. J Nucl Med Technol. 1983;11(2):55–60.

    Google Scholar 

  28. Meikle SR, Badawi RD. Quantitative techniques PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron emission tomography: basic sciences. London: Springer-Verlag; 2005. p. 93–126.

    Chapter  Google Scholar 

  29. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET, B. Dordrecht: Kluwer Academic Publishers; 1998. p. 55–109.

    Chapter  Google Scholar 

  30. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon-emission CT. IEEE Trans Med Imaging. 1991;10(3):408–2.

    Article  CAS  PubMed  Google Scholar 

  31. Zanzonico PB, Nehmeh SA. Introduction to clinical and laboratory (small-animal) image registration and fusion. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1580–3.

    Article  Google Scholar 

  32. Beyer T, Townsend DW, Blodgett TM. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med. 2002;46(1):24–34.

    CAS  PubMed  Google Scholar 

  33. Israel O, Goldsmith SJ, editors. Hybrid SPECT/CT: imaging in clinical practice. Boca Raton: CRC Press/Taylor & Francis; 2006.

    Google Scholar 

  34. Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol. 2002;75 Spec No:S24–30.

    Article  PubMed  Google Scholar 

  35. Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33(3):193–204.

    Article  PubMed  Google Scholar 

  36. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  37. Pichler BJ, Judenhofer MS, Wehrl HF. PET/MRI hybrid imaging: devices and initial results. Eur Radiol. 2008;18(6):1077–86.

    Article  PubMed  Google Scholar 

  38. Pichler BJ, Kolb A, Nägele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    Article  PubMed  Google Scholar 

  39. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med. 2008;38(3):199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beyer T, Freudenberg LS, Czernin J, Townsend DW. The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insights Imaging. 2011;2(3):235–46.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Graham MC, Pentlow KS, Mawlawi O, Finn RD, Daghighian F, Larson SM. An investigation of the physical characteristics of 66Ga as an isotope for PET imaging and quantification. Med Phys. 1997;24(2):317–26.

    Article  CAS  PubMed  Google Scholar 

  42. Pentlow KS, Finn RD, Larson SM, Erdi YE, Beattie BJ, Humm JL. Quantitative imaging of yttrium-86 with PET: the occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging. 2000;3(3):85–90.

    Article  CAS  PubMed  Google Scholar 

  43. Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(4):535–53.

    Article  CAS  PubMed  Google Scholar 

  44. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV. Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol. 2010;5(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Amis ES Jr, Butler PF, Applegate KE, Birnbaum SB, Brateman LF, Hevezi JM, et al. American College of Radiology. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007;4(5):272–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Zanzonico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanzonico, P. (2019). An Overview of Nuclear Imaging. In: Lewis, J., Windhorst, A., Zeglis, B. (eds) Radiopharmaceutical Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98947-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98946-4

  • Online ISBN: 978-3-319-98947-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics